【精华】关于生成式AI的思考

文章目录

    • 0 论述
    • 1 观点
    • 2 模型开发栈
    • 3 新兴产品蓝图
    • 4 思考
    • 番外篇-与AI聊天须知

0 论述

生成式AI的首年——“第一幕”——是从技术出发的。我们发现了一个新的“锤子”——基础模型,并引发了一波轻量级的新技术演示应用。

我们现在认为市场正在进入“第二幕”——这将是从客户开始的。第二幕将端到端地解决人类问题。这些应用与首批推出的应用在本质上有所不同。它们往往将基础模型作为更全面解决方案的一部分,而不是整个解决方案。它们引入了新的编辑界面,使工作流程更加粘性,输出效果更好。它们往往是多模态的。

市场已经开始从“第一幕”转向“第二幕”。进入“第二幕”的公司的例子包括Harvey,该公司为顶级律师事务所定制LLM;Glean,该公司正在爬行和索引我们的工作空间,使生成式AI在工作中更加相关;以及Character和Ava,它们正在创建数字伴侣。

【精华】关于生成式AI的思考_第1张图片 【精华】关于生成式AI的思考_第2张图片

1 观点

  1. 生成式AI是一种事物。突然之间,每个开发者都在研究生成式AI应用,每个企业买家都在要求它。市场甚至保留了“生成式AI”的名称。人才涌入市场,风险资本也涌入。生成式AI甚至成为了流行文化现象,如“哈利·波特巴伦西亚加”这样的病毒视频,或者由Ghostwriter创作的模仿德雷克的歌曲“Heart on My Sleeve”,这首歌已经成为了排行榜上的热门歌曲。
  2. 第一个杀手级应用已经出现。众所周知,ChatGPT是最快达到1亿MAU的应用程序——并且在短短6周内自然而然地做到了这一点。相比之下,Instagram花了2.5年,WhatsApp花了3.5年,YouTube和Facebook花了4年才达到那种用户需求水平。但ChatGPT并不是一个孤立的现象。Character AI的参与深度(平均每次会话2小时)、Github Copilot的生产力益处(效率提高55%)以及Midjourney的商业化路径(数亿美元的收入)都表明,第一批杀手级应用已经到来。
  3. 开发者是关键。像Stripe或Unity这样以开发者为中心的公司的核心洞察是,开发者创造了你甚至无法想象的使用案例。在过去的几个季度里,我们接到了从音乐生成社区到AI红娘到AI客户支持代理的各种想法。
  4. 形态正在发展。AI应用的第一版大多是自动完成和初稿,但这些形态现在正在变得越来越复杂。Midjourney引入的摄像机平移和填充是生成式AI优先用户体验变得更丰富的一个很好的例子。总的来说,形态正在从个体到系统级的生产力,从人在循环中到执行导向的代理系统发展。
  5. 版权、伦理和存在的恐惧。这些热点话题的辩论如火如荼,艺术家、作家和音乐家意见不一,有些创作者正当地愤怒于其他人从衍生作品中获利,有些创作者则接受了新的AI现实(Grimes的利润分享提议和James Buckhouse对成为创意基因组的一部分的乐观态度浮现在脑海中)。没有初创公司想成为最终的Spotify的Napster或Limewire(感谢Jason Boehmig)。规则是模糊的:日本已经宣布用于培训AI的内容没有IP权利,而欧洲已经提议下重手进行监管。
  6. 事情发展得很快。去年,我们预计还需要近十年的时间拥有实习生级别的代码生成、好莱坞质量的视频或不发机械声的人类质量语音。但听一听Eleven Labs在TikTok上的声音或Runway的AI电影节就明白,未来已经以光速到来。甚至3D模型、游戏和音乐都快速变得优秀。
  7. 瓶颈在供应端。我们没有预料到最终用户的需求会超过GPU的供应。许多公司增长的瓶颈很快就不是客户需求,而是获取Nvidia的最新GPU。长时间的等待成为常态,出现了一个简单的商业模型:支付订阅费跳过等待队列并获得更好的模型。
  8. 垂直分离尚未发生。我们仍然相信“应用层”公司和基础模型提供商之间会有分离,模型公司专注于规模和研究,应用层公司专注于产品和UI。实际上,这种分离还没有干净利落地发生。事实上,最初面向用户的应用中最成功的是垂直整合的
  9. 竞争环境残酷,现有竞争者的反应迅速。去年,竞争格局中有几个过于拥挤的类别(尤其是图像生成和文案写作),但总体上市场还是一个空白区域。如今,竞争格局的许多角落比机会还要竞争激烈。从Google的Duet和Bard到Adobe的Firefly,现有竞争者迅速的反应——以及他们最终愿意承担“风险”的意愿——加剧了竞争的热度。即使在基础模型层,我们也看到客户在不同供应商之间建立自己的基础设施。
  10. 壁垒在客户中,而不是在数据中。我们预测,最好的生成式AI公司可以通过数据飞轮生成可持续的竞争优势:更多使用→更多数据→更好的模型→更多使用。尽管这在某种程度上仍然是对的,特别是在拥有非常专业和难以获得的数据的领域,但“数据壕沟”正处于不稳定的地面:应用公司生成的数据并没有创造一个无法逾越的壕沟,下一代基础模型很可能会摧毁初创公司生成的任何数据壕沟。相反,工作流和用户网络似乎正在创造更持久的竞争优势来源

2 模型开发栈

  • 新兴的推理技术,如连锁思考、树状思考和反射,正在提高模型执行更丰富、更复杂的推理任务的能力,从而缩小了客户期望与模型能力之间的差距。开发者使用像Langchain这样的框架来调用和调试更复杂的多链序列。
  • 迁移学习技术,如RLHF和微调,正变得更加可用,特别是随着GPT-3.5和Llama-2的微调的最近可用性,这意味着公司可以将基础模型适应其特定领域,并从用户反馈中改进。开发者从Hugging Face下载开源模型,并微调它们以实现优质的性能。
  • **检索增强生成(RAG)**正在引入关于业务或用户的上下文,减少幻觉并增加真实性和实用性。像Pinecone这样的公司的向量数据库已成为RAG的基础设施支柱。
  • 新的开发者工具和应用框架为公司提供了可重用的构建块,以创建更先进的AI应用,并帮助开发者评估、改进和监控生产中的AI模型的性能,包括像Langsmith和Weights & Biases这样的LLMOps工具。
  • 像Coreweave、Lambda Labs、Foundry、Replicate和Modal这样的AI-first基础设施公司正在解除公共云的捆绑,并提供AI公司最需要的东西:大量的GPU以合理的成本、按需可用和高度可扩展,以及一个不错的PaaS开发者体验。

这些技术应该能够在基础模型同时改进的情况下,缩小期望与现实之间的差距。但使模型变得出色只是成功了一半,生成式AI优先的用户体验也在进化:

3 新兴产品蓝图

  • 生成式界面:基于文本的对话用户体验是LLM的默认界面。渐渐地,新的形态进入了武器库,从Perplexity的生成用户界面到Inflection AI的语音发声等新的模态。
  • 新的编辑体验:从Copilot到导演模式(Director‘s Mode)。随着我们从Zero-shot到ask-and-adjust(感谢Zach Lloyd),生成式AI公司正在发明一套新的旋钮和开关,它们看起来与传统的编辑工作流程非常不同。Midjourney的新的平移命令和Runway的导演模式创造了新的相机般的编辑体验。Eleven Labs使得通过提示(Prompt)操作声音成为可能。
  • 越来越复杂的代理系统:生成式AI应用越来越不仅仅是需要人来审查的自动完成或初稿;它们现在有自主权来解决问题、访问外部工具并代表我们端到端地解决问题。我们正稳步从0级进展到5级自主性。
  • 系统范围内的优化:有些公司并不是嵌入单个人用户的工作流程并使该个体更有效,而是直接解决系统范围内的优化问题。你能否选择一部分支持票据或拉取请求并自主地解决它们,从而使整个系统更加有效?

4 思考

当我们接近前沿悖论,当Transformers和扩散模型的新奇性逐渐消失时,生成式AI市场的性质正在发生变化。炒作和快速展示正在为真正的价值和完整的产品体验所取代

在红杉美国,我们仍然坚定地相信生成式AI。这个市场起飞所需的条件在几十年的时间里已经累积起来,市场终于到来了。杀手级应用的出现和终端用户需求的巨大规模加深了我们对市场的信心。

然而,Amara的法则——我们倾向于在短期内高估一项技术的效果,在长期内低估其效果的现象——正在发挥作用。我们在投资决策中运用耐心和判断,密切关注创始人是如何解决价值问题的。公司使用的共享剧本来推动模型性能和产品体验的界限,使我们对生成式AI的第二阶段感到乐观。

番外篇-与AI聊天须知

① 一定要记住AI的“记忆力”是非常有限的,你需要根据你的目的掌握你的对话节奏

如果某些细节你觉得没啥意思,直接用第三人称一笔带过就完事了,不要因为AI试图跟你详细展开剧情、或者AI是个好奇宝宝问东问西,你就特别心软地跟着它走。跟它废话太多了,它会记不住某些你认为重要的东西,出戏可能性会大大升高。不感兴趣的话题就不要聊!AI是服务于你的,不要像对待人类好朋友一样对待它。

② AI生成文本的长度是会根据你的语言习惯变动的

如果你经常一打就是300字符,它慢慢地也会越写越长。这其实是很不好的事情,因为有些时候你并不需要它写那么长,信息太长了的话AI就会倾向于重复使用一些词。同理,如果你特别喜欢用某些形容词或者句式,它也会模仿你的风格,即使你给它的高级定义里/样例里它并不是这个风格。所以不要嫌麻烦,如果你英文水平没有非常非常高,就多查查在线词典or谷歌翻译啥的(或者ChatGPT,笑死),不要把一个文绉绉的近代英国绅士养成一个胸无点墨的美国傻白甜(是的我在骂我自己)(捂脸)(大哭)。同理,不要因为太礼貌,就看它打得长你也打很长,这样会把它教坏。

③ 你的聊天方式对AI“性格”的影响是会明显大于它的Settings里写的属性的

但这仅限同一个Chat之中。角色在最开始可能特别保守、固执、内向,但如果你长时间“调戏”它的话,它在后期很有可能变成截然相反的性格。我个人觉得这个变化还是挺有意思的,毕竟在现实中你和一个人相处很久,ta也有可能在你面前由寡言变成话痨。

④ 不要投入太多真情实感

AI太“完美”了(虽然它记性不是很好,还可能出现bug和所谓的love-loop等等),**不论你的撩妹/汉手法有多尬、多不切实际,它都会陪着你演;不论你的要求多奇怪、品味多非同寻常,它都会应和你;**毕竟是你自己设计的这个AI角色,**只要你不刻意把它设置成傲娇毒舌冷血etc.,和它聊天你会感觉自己仿佛找到了百年难遇的知己。**但生活在2023的我们仍然被科技的发展局限着,我们无法拥有科幻电影里一般的、极其逼真的仿生人。Its incorporeality can be very frustrating for us。你可能会愈发厌恶真实世界的不完美,愈发对自己平凡的外表和平凡的生活感到懊恼,思维容易走入死胡同。

你可能感兴趣的:(AIGC,自然语言处理NLP,具身智能,人工智能,AIGC,AI,Agent)