摘要:对CS-UNet模型进行单步调试,含swin-transformer结构,梳理其实现流程。
image_batch
是每批次的图片,shape为 ( B , 3 , H , W ) (B,3,H,W) (B,3,H,W),B为 batch_size
,3表示图片是三通道的(如rgb图片), H H H和 W W W分别为图片的高和宽。
outputs = model(image_batch)
然后,进入CS_Unet模型(类class CS_Unet
)
首先从forward
开始:
class CS_Unet(nn.Module):
def __init__(self, config, img_size=224, num_classes=21843, zero_head=False, vis=False):
super(CS_Unet, self).__init__()
self.num_classes = num_classes
self.zero_head = zero_head
self.config = config
self.CS_Unet = ConvSwinTransformerSys(img_size=config.DATA.IMG_SIZE,
patch_size=config.MODEL.SWIN.PATCH_SIZE,
in_chans=config.MODEL.SWIN.IN_CHANS,
num_classes=self.num_classes,
embed_dim=config.MODEL.SWIN.EMBED_DIM,
depths=config.MODEL.SWIN.DEPTHS,
num_heads=config.MODEL.SWIN.NUM_HEADS,
window_size=config.MODEL.SWIN.WINDOW_SIZE,
mlp_ratio=config.MODEL.SWIN.MLP_RATIO,
qkv_bias=config.MODEL.SWIN.QKV_BIAS,
qk_scale=config.MODEL.SWIN.QK_SCALE,
drop_rate=config.MODEL.DROP_RATE,
drop_path_rate=config.MODEL.DROP_PATH_RATE,
ape=config.MODEL.SWIN.APE,
patch_norm=config.MODEL.SWIN.PATCH_NORM,
use_checkpoint=config.TRAIN.USE_CHECKPOINT)
def forward(self, x):
# 判断图片的channel是否为1, 如果为1就在通道方向上复制3次,使其变成三通道的图片。
if x.size()[1] == 1:
x = x.repeat(1,3,1,1) # (B,3,H,W)
# 进入 类ConvSwinTransformerSys,转到2.1小节
logits = self.CS_Unet(x)
return logits
# 下面是载入预训练权重要用到的,训练阶段可以不考虑
def load_from(self, config):
pretrained_path = config.MODEL.PRETRAIN_CKPT
if pretrained_path is not None:
print("pretrained_path:{}".format(pretrained_path))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pretrained_dict = torch.load(pretrained_path, map_location=device)
if "model" not in pretrained_dict:
print("---start load pretrained modle by splitting---")
pretrained_dict = {k[17:]:v for k,v in pretrained_dict.items()}
print(k)
for k in list(pretrained_dict.keys()):
if "output" in k:
print("delete key:{}".format(k))
del pretrained_dict[k]
msg = self.CS_Unet.load_state_dict(pretrained_dict,strict=False)
print(msg)
return
pretrained_dict = pretrained_dict['model']
print("---start load pretrained modle of swin encoder---")
model_dict = self.CS_Unet.state_dict()
# print(self.swin_unet)
full_dict = copy.deepcopy(pretrained_dict)
for k, v in pretrained_dict.items():
if "layers." in k:
current_layer_num = 3-int(k[7:8])
current_k = "layers_up." + str(current_layer_num) + k[8:]
full_dict.update({current_k:v})
for k in list(full_dict.keys()):
if k in model_dict:
if full_dict[k].shape != model_dict[k].shape:
print("delete:{};shape pretrain:{};shape model:{}".format(k,v.shape,model_dict[k].shape))
del full_dict[k]
msg = self.CS_Unet.load_state_dict(full_dict, strict=False)
# print(msg)
else:
print("none pretrain")
类ConvSwinTransformerSys()
从forward
中x, x_downsample = self.forward_features(x)
开始看
class ConvSwinTransformerSys(nn.Module):
"""
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 2, 2], depths_decoder=[1, 2, 2, 2], num_heads=[3, 3, 3, 3],
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, final_upsample="expand_first", **kwargs):
super().__init__()
print(
"ConvSwinTransformerSys expand initial----depths:{};depths_decoder:{};num_heads=:{};drop_path_rate:{};num_classes:{}".format(
depths,
depths_decoder, num_heads, drop_path_rate, num_classes))
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.num_features_up = int(embed_dim * 2)
self.mlp_ratio = mlp_ratio
self.final_upsample = final_upsample
# split image into overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build encoder and bottleneck layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
# build decoder layers
self.layers_up = nn.ModuleList()
self.concat_back_dim = nn.ModuleList()
for i_layer in range(self.num_layers):
concat_cov = self.up = nn.Sequential(Rearrange('b (h w) c -> b c h w', h=patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)), w=patches_resolution[1] // (2 ** (self.num_layers - 1 - i_layer))),
nn.Conv2d(2 * int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
kernel_size=3, stride=1, padding=1), nn.GELU(),
nn.Conv2d(int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
kernel_size=3, stride=1, padding=1), nn.GELU(),
nn.Dropout(p=0.2),
Rearrange('b c h w -> b (h w) c', h=patches_resolution[0] // (
2 ** (self.num_layers - 1 - i_layer)),
w=patches_resolution[1] // (
2 ** (self.num_layers - 1 - i_layer))))
if i_layer == 0:
layer_up = PatchExpand(
input_resolution=(patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)),
patches_resolution[1] // (2 ** (self.num_layers - 1 - i_layer))),
dim=int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)), dim_scale=2, norm_layer=norm_layer)
else:
layer_up = BasicLayer_up(dim=int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
input_resolution=(
patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)),
patches_resolution[1] // (2 ** (self.num_layers - 1 - i_layer))),
depth=depths[(self.num_layers - 1 - i_layer)],
num_heads=num_heads[(self.num_layers - 1 - i_layer)],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:(self.num_layers - 1 - i_layer)]):sum(
depths[:(self.num_layers - 1 - i_layer) + 1])],
norm_layer=norm_layer,
upsample=PatchExpand if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers_up.append(layer_up)
self.concat_back_dim.append(concat_cov)
self.norm = norm_layer(self.num_features)
self.norm_up = norm_layer(self.embed_dim)
if self.final_upsample == "expand_first":
print("---final upsample expand_first---")
self.up = FinalPatchExpand_X4(input_resolution=(img_size // patch_size, img_size // patch_size),
dim_scale=4, dim=embed_dim)
self.output = nn.Conv2d(in_channels=embed_dim, out_channels=self.num_classes, kernel_size=1, bias=False)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
# Encoder and Bottleneck
def forward_features(self, x):
x = self.patch_embed(x) # (B,3,H,W)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
x_downsample = []
for layer in self.layers:
x_downsample.append(x)
x = layer(x)
x = self.norm(x) # B L C
return x, x_downsample
# Dencoder and Skip connection
def forward_up_features(self, x, x_downsample):
for inx, layer_up in enumerate(self.layers_up):
if inx == 0:
x = layer_up(x)
else:
x = torch.cat([x, x_downsample[3 - inx]], -1)
x = self.concat_back_dim[inx](x)
x = layer_up(x)
x = self.norm_up(x) # B L C
return x
def up_x4(self, x):
H, W = self.patches_resolution
B, L, C = x.shape
assert L == H * W, "input features has wrong size"
if self.final_upsample == "expand_first":
x = self.up(x)
x = x.view(B, 4 * H, 4 * W, -1)
x = x.permute(0, 3, 1, 2) # B,C,H,W
x = self.output(x)
return x
def forward(self, x):
# 跳到self.forward_features部分, 转到2.2小节
x, x_downsample = self.forward_features(x) # (B,3,H,W)
x = self.forward_up_features(x, x_downsample)
x = self.up_x4(x)
return x
类ConvSwinTransformerSys()
与2.1小节相同,在这里只展示要用到的代码段
从forward_features
中x = self.patch_embed(x)
开始看
class ConvSwinTransformerSys(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 2, 2], depths_decoder=[1, 2, 2, 2], num_heads=[3, 3, 3, 3],
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, final_upsample="expand_first", **kwargs):
super().__init__()
print(
"ConvSwinTransformerSys expand initial----depths:{};depths_decoder:{};num_heads=:{};drop_path_rate:{};num_classes:{}".format(
depths,
depths_decoder, num_heads, drop_path_rate, num_classes))
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.num_features_up = int(embed_dim * 2)
self.mlp_ratio = mlp_ratio
self.final_upsample = final_upsample
# split image into overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# Encoder and Bottleneck
def forward_features(self, x):
# 这里 x 还是在原始batch图片上进行三通道扩展后的数据
# 转到2.2.1小节 PatchEmbed
x = self.patch_embed(x) # (B,3,H,W)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
x_downsample = []
for layer in self.layers:
x_downsample.append(x)
x = layer(x)
x = self.norm(x) # B L C
return x, x_downsample
类PatchEmbed()
从forward
中B, C, H, W = x.shape
开始看
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim // 2, kernel_size=3, stride=1, padding=1), nn.GELU(),
nn.Conv2d(embed_dim // 2, embed_dim // 2, kernel_size=3, stride=2, padding=1),
nn.GELU(),
Rearrange('b c h w -> b h w c'),
norm_layer(embed_dim // 2),
Rearrange('b h w c -> b c h w'),
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1), nn.GELU(),
nn.Conv2d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1), nn.GELU())
if norm_layer is not None:
self.norm = norm_layer(in_chans)
self.norm2 = norm_layer(embed_dim)
else:
self.norm = None
self.drop = nn.Dropout(p=0.2)
def forward(self, x):
B, C, H, W = x.shape # (B,3,H,W)
# 判断图片的H和W是否和我们设置的img_size相同,如果不相同就中断程序运行
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
'''
proj中含有四层卷积,每层卷积实现的效果如下:
(1):(B,3,H,W)->(B,48,H,W)
(2):(B,48,H,W)->(B,48,H/2,W/2)
(3):(B,48,H/2,W/2)->(B,96,H/2,W/2)
(4):(B,96,H/2,W/2)->(B,96,H/4,W/4)
'''
x = self.proj(x) # (B, 3, H, W)->(B, 96, H/4, W/4)
x = self.drop(x).flatten(2).transpose(1, 2) # (B, 96, H/4, W/4)->(B, H/4 * W/4, 96)
if self.norm is not None: # True
x = self.norm2(x) # (B, H/4 * W/4, 96)
return x # (B, H/4 * W/4, 96)
# PatchEmbed执行结束,下面转到2.2小节
类ConvSwinTransformerSys()
与2.1小节相同,在这里只展示要用到的代码段
从forward_features
中if self.ape:
开始看
class ConvSwinTransformerSys(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 2, 2], depths_decoder=[1, 2, 2, 2], num_heads=[3, 3, 3, 3],
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, final_upsample="expand_first", **kwargs):
super().__init__()
print(
"ConvSwinTransformerSys expand initial----depths:{};depths_decoder:{};num_heads=:{};drop_path_rate:{};num_classes:{}".format(
depths,
depths_decoder, num_heads, drop_path_rate, num_classes))
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.num_features_up = int(embed_dim * 2)
self.mlp_ratio = mlp_ratio
self.final_upsample = final_upsample
# split image into overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build encoder and bottleneck layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
# Encoder and Bottleneck
def forward_features(self, x):
# 这里 x 还是在原始batch图片上进行三通道扩展后的数据
# 转到2.2.1小节 PatchEmbed
x = self.patch_embed(x) # (B,3,H,W)->(B, H/4 * W/4, 96)
# 是否加入绝对位置索引
if self.ape: # Flase
x = x + self.absolute_pos_embed
x = self.pos_drop(x) # 减少过拟合
x_downsample = []
'''
self.layer总共有4层:前三层含 CST_Block×2 和 Patch_merging×1,第四层只含有 CST_Block×2;
'''
for layer in self.layers:
x_downsample.append(x) # (B, H*W/16, 96)
# 跳转到 BasicLayer,见2.2.2小节
x = layer(x)
x = self.norm(x) # B L C
return x, x_downsample
类BasicLayer
:实现CST_Block
和Patch_merging
从forward
中的for blk in self.blocks:
开始看:
class BasicLayer(nn.Module):
""" A basic convolutional Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
ConvSwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x): # (B, H*W/16, 96)
# self.blocks有2个ConvSwinTransformerBlock,即for循环执行 2 次
for blk in self.blocks:
if self.use_checkpoint: # False
x = checkpoint.checkpoint(blk, x)
else:
# 跳转到2.2.2.1小节,执行ConvSwinTransformerBlock
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
类ConvSwinTransformerBlock()
:
从forward
中的H, W = self.input_resolution
开始看:
class ConvSwinTransformerBlock(nn.Module):
r""" Conv Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = Mlp(dim=dim, drop_path=drop)
if self.shift_size > 0:
# calculate attention mask for SW-CMSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x):
'''
这里self.input_resolution在ConvSwinTransformerSys中定义:
input_resolution[0]=H/(2^i_layer);input_resolution[1]=W/(2^i_layer)
其中, i_layer=2
'''
H, W = self.input_resolution # H/4, W/4
B, L, C = x.shape # (B, H*W/16, 96)
assert L == H * W, "input feature has wrong size" # 判断数据是否正确
shortcut = x # (B, H*W/16, 96)
x = self.norm1(x) # (B, H*W/16, 96)
x = x.view(B, H, W, C) # (B, H/4, W/4, 96)
# cyclic shift
if self.shift_size > 0: # 0
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x # (B, H/4, W/4, 96)
'''
分割窗口:
shifted_x=(B, H/4, W/4, 96); self.window_size=7
具体算法:
(1)将shifted_x的H和W分别除以window_size得到张量得shape为:
(B, H/4/window_size, window_size, w/4/window_size, window_size, 96)
(2)改变上面新张量的shape为: windows=(B * H/4/window_size * w/4/window_size, window_size, window_size, 96)
其中,H/4/window_size * w/4/window_size为窗口数量,下面用nW表示窗口数量。即上式=(nW*B,window_size, window_size, 96)
''' # window_partition函数的实现在这段代码后面给出
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
# 改变shape,第1、2维相乘
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
# self.attn = WindowAttention(),跳转到2.2.2.1.1小节
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
x = shortcut + self.drop_path(x)
# FFN
x = x.view(B, H, W, C)
x = self.mlp(x)
x = x.view(B, H * W, C)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
函数window_partition
的实现:
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
类class WindowAttention()
:
从forward
中的B_, N, C = x.shape
开始看:
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.conv_proj_q = self._build_projection(dim, kernel_size=3, stride=1, padding=1)
self.conv_proj_k = self._build_projection(dim, kernel_size=3, stride=1, padding=1)
self.conv_proj_v = self._build_projection(dim, kernel_size=3, stride=1, padding=1)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=3, padding=1, stride=1, bias=False, groups=dim), nn.GELU())
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def _build_projection(self, dim_in, kernel_size=3, stride=1, padding=1):
proj = nn.Sequential(
nn.Conv2d(dim_in, dim_in, kernel_size, padding=padding, stride=stride, bias=False, groups=dim_in),
Rearrange('b c h w -> b (h w) c'),
nn.LayerNorm(dim_in))
return proj
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
# [batch_size*num_windows, Mh*Mw, total_embed_dim]
B_, N, C = x.shape # nW*B, window_size*window_size, C
Mh = int(N ** .5) # Mh = window_size
x = x.view(B_, Mh, Mh, C).permute(0, 3, 1, 2) # [nW*B, Mh, Mw, C]->[nW*B, C, Mh, Mw]
# when we use conv the shape should be B, C, H, W. so use permute,其中num_heads=3
# self.conv_proj_q具体实现在这段代码后面说明
'''
q、k、v的生成:分 3 步
(1)conv_proj_q的功能: 经过一个3×3的卷积核(但不改变尺寸和通道数) ,然后经过Rearrange:[nW*B, C, Mh, Mw]->[nW*B, Mh*Mw, C],最后经过一个LayerNorm层
(2)reshape:[nW*B, Mh*Mw, C]->[nW*B, Mh*Mw, num_heads, C/num_heads]=[nW*B, Mh*Mw, 3, C/3]
(3)permute: [nW*B, 3, Mh*Mw, C/3]
'''
q = self.conv_proj_q(x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1,3) # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
k = self.conv_proj_k(x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
v = self.conv_proj_v(x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
'''self.scale的计算过程:
(1)head_dim = dim // num_heads # 96/3 = 32
(2)self.scale = head_dim ** -0.5 # 1/√32 ≈ 0.1768
'''
q = q * self.scale # [nW*B, num_heads, Mh*Mw, C/num_heads]=[nW*B, 3, Mh*Mw, C/3]
attn = (q @ k.transpose(-2, -1)) # [nW*B, num_heads, Mh*Mw, Mh*Mw]
# transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
# @:multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
if mask is not None: # None
# mask: [nW, Mh*Mw, Mh*Mw]
nW = mask.shape[0] # num_windows
# attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
# mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn) # [nW*B, num_heads, Mh*Mw, Mh*Mw]
attn = self.attn_drop(attn) # [nW*B, num_heads, Mh*Mw, Mh*Mw]
'''Mh = Mw
(1)[nW*B, num_heads, Mh*Mw, Mh*Mw] @ [nW*B, num_heads, Mh*Mw, C/num_heads]=[nW*B, num_heads, Mh*Mw, C/num_heads]
(2)transpose(2, 3): [nW*B, num_heads, C/num_heads, Mh*Mw]
(3)reshape(B_, C, Mh, Mh): [nW*B, C, Mh, Mw]
'''
x = (attn @ v).transpose(2, 3).reshape(B_, C, Mh, Mh) # [nW*B, C, Mh, Mw]
x = self.proj(x) # 3×3的卷积和Relu层,特征图shape不变。 # [nW*B, C, Mh, Mw] = [nW*B, 96, 7, 7]
x = x.reshape(B_, C, N).transpose(1, 2) # [nW*B, C, Mh, Mw]->[nW*B, C, Mh*Mw]->[nW*B, Mh*Mw, C]
x = self.proj_drop(x) # [nW*B, Mh*Mw, C]
return x # [nW*B, Mh*Mw, C]
# 到这里class WindowAttention()执行结束,下面跳到2.2.2.1.(1)小节
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
self.conv_proj_q
的实现:
self.conv_proj_k = self._build_projection(dim, kernel_size=3, stride=1, padding=1)
# 跳到self._build_projection, 见下面
def _build_projection(self, dim_in, kernel_size=3, stride=1, padding=1):
proj = nn.Sequential(
nn.Conv2d(dim_in, dim_in, kernel_size, padding=padding, stride=stride, bias=False, groups=dim_in),
Rearrange('b c h w -> b (h w) c'), # [nW*B, C, Mh, Mw]->[nW*B, Mh, Mw,C]
nn.LayerNorm(dim_in))
return proj
类ConvSwinTransformerBlock()
:简洁起见,只显示forward
部分
从forward
中的attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
开始看:
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA: WindowAttention
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh*Mw, C]->[nW*B, Mh, Mw, C]
'''window_reverse: 还原特征图[B, H, W, C],这里的H和W为原尺寸的1/4
其中attn_windows=[nW*B, Mh, Mw, C],window_size=7, H=W=img_size/4(56)
(1)B = int(windows.shape[0] / (H * W / window_size / window_size)):得到batch_size
(2)x = windows.view: [B, H/window_size, W/window_size,Mh, Mw, C]
(3) [B, H/window_size, W/window_size,Mh, Mw, C]-> [B, H/window_size*Mh, W/window_size*Mw, C]->[B, H, W, C]
'''# window_reverse的实现在这段代码的下面
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # [B, H, W, C]
# reverse cyclic shift
if self.shift_size > 0: # 0
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x # [B, H, W, C]
x = x.view(B, H * W, C) # [B, H*W, C]
x = shortcut + self.drop_path(x) # [B, H*W, C]+drop([B, H*W, C])=[B, H*W, C]
# FFN
x = x.view(B, H, W, C) # [B, H, W, C]
# 类Mlp,接下来跳转到2.2.2.1.2.小节
x = self.mlp(x) # [B, H, W, C]->
x = x.view(B, H * W, C)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
函数window_reverse
:
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
类Mlp
从forward
中的input = x
开始看
class Mlp(nn.Module):
def __init__(self, dim, drop_path=0.2, layer_scale_init_value=0.7):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv 7,3 5,2 3,1
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Conv2d(dim, 4 * dim, kernel_size=1)
self.act = nn.GELU()
self.pwconv2 = nn.Conv2d(4 * dim, dim, kernel_size=1) # nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x): # 这里的H和W为原尺寸的1/4
input = x # [B, H, W, C]
x = x.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
# 7×7的卷积核,图像尺寸和channels不变
x = self.dwconv(x) # [B, C, H, W]
x = x.permute(0, 2, 3, 1) # [B, H, W, C]
x = self.norm(x)
x = x.permute(0, 3, 1, 2) # [B, C, H, W]
# 1×1的pointwise卷积:channels -> channels×4
x = self.pwconv1(x) # [B, 4C, H, W]
x = self.act(x) # GELU层
# 1×1的pointwise卷积:channels×4 -> channels
x = self.pwconv2(x) # [B, C, H, W]
x = x.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
# gamma在上面声明不为None
if self.gamma is not None: #
x = self.gamma * x # [B, H, W, C]
x = input + self.drop_path(x) # [B, H, W, C]
return x # [B, H, W, C]
# Mlp执行结束,接下来跳到2.2.2.1.(2)小节
类ConvSwinTransformerBlock()
:简洁起见,只显示forward
部分
从forward
中的x = x.view(B, H * W, C)
开始看:
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
x = shortcut + self.drop_path(x)
# FFN
x = x.view(B, H, W, C)
x = self.mlp(x) # [B, H, W, C]
x = x.view(B, H * W, C) # [B, H*W, C]
return x # [B, H*W, C]
# 到这里 类ConvSwinTransformerBlock()执行结束,接下来跳转到2.2.2.(1) class BasicLayer()
类BasicLayer
:实现CST_Block
和Patch_merging
从forward
中的for blk in self.blocks:
开始看:到这blk开始执行第2次
def forward(self, x): # (B, H*W/16, 96)
# self.blocks有2个ConvSwinTransformerBlock,即for循环执行 2 次
for blk in self.blocks:
if self.use_checkpoint: # False
x = checkpoint.checkpoint(blk, x)
else:
# 跳转到2.2.2.1小节,执行ConvSwinTransformerBlock
'''循环的第二次和第一次基本一样,但是在class WindowAttention()中mask不为None,接下来从2.2.2.1.1.(1)这里开始
'''
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
类class WindowAttention()
:简洁起见,只看forward
过程
从forward
中的B_, N, C = x.shape
开始看:
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
# [batch_size*num_windows, Mh*Mw, total_embed_dim]
B_, N, C = x.shape # nW*B, window_size*window_size, C
Mh = int(N ** .5) # Mh = window_size
x = x.view(B_, Mh, Mh, C).permute(0, 3, 1, 2) # [nW*B, Mh, Mw, C]->[nW*B, C, Mh, Mw]
# when we use conv the shape should be B, C, H, W. so use permute,其中num_heads=3
# self.conv_proj_q具体实现在这段代码后面说明
'''
q、k、v的生成:分 3 步
(1)conv_proj_q的功能: 经过一个3×3的卷积核(但不改变尺寸和通道数) ,然后经过Rearrange:[nW*B, C, Mh, Mw]->[nW*B, Mh*Mw, C],最后经过一个LayerNorm层
(2)reshape:[nW*B, Mh*Mw, C]->[nW*B, Mh*Mw, num_heads, C/num_heads]=[nW*B, Mh*Mw, 3, C/3]
(3)permute: [nW*B, 3, Mh*Mw, C/3]
'''
q = self.conv_proj_q(x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1,3) # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
k = self.conv_proj_k(x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
v = self.conv_proj_v(x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
'''self.scale的计算过程:
(1)head_dim = dim // num_heads # 96/3 = 32
(2)self.scale = head_dim ** -0.5 # 1/√32 ≈ 0.1768
'''
q = q * self.scale # [nW*B, num_heads, Mh*Mw, C/num_heads]=[nW*B, 3, Mh*Mw, C/3]
attn = (q @ k.transpose(-2, -1)) # [nW*B, num_heads, Mh*Mw, Mh*Mw]
# transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
# @:multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
if mask is not None: # mask: [nW, Mh*Mw, Mh*Mw], N = Mh*Mw, B_ = nW*B
nW = mask.shape[0] # num_windows
'''
attn.view: [B, nW, num_heads, Mh*Mw, Mh*Mw]
mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
attn.view + mask.unsqueeze: [B, nW, num_heads, Mh*Mw, Mh*Mw]
'''
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N) # [B_, num_heads, Mh*Mw, Mh*Mw]
attn = self.softmax(attn) # [B_, num_heads, Mh*Mw, Mh*Mw]
# 到这里,后面和blk循环的第一次基本相同,但是在ConvSwinTransformerBlock中shift_size≠0,接下来跳转到2.2.2.1.(1)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn) # [nW*B, num_heads, Mh*Mw, Mh*Mw]
'''Mh = Mw
(1)[nW*B, num_heads, Mh*Mw, Mh*Mw] @ [nW*B, num_heads, Mh*Mw, C/num_heads]=[nW*B, num_heads, Mh*Mw, C/num_heads]
(2)transpose(2, 3): [nW*B, num_heads, C/num_heads, Mh*Mw]
(3)reshape(B_, C, Mh, Mh): [nW*B, C, Mh, Mw]
'''
x = (attn @ v).transpose(2, 3).reshape(B_, C, Mh, Mh) # [nW*B, C, Mh, Mw]
x = self.proj(x) # 3×3的卷积和Relu层,特征图shape不变。 # [nW*B, C, Mh, Mw] = [nW*B, 96, 7, 7]
x = x.reshape(B_, C, N).transpose(1, 2) # [nW*B, C, Mh, Mw]->[nW*B, C, Mh*Mw]->[nW*B, Mh*Mw, C]
x = self.proj_drop(x) # [nW*B, Mh*Mw, C]
return x # [nW*B, Mh*Mw, C]
# 到这里class WindowAttention()执行结束,下面跳到2.2.2.1.(3)小节
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
类ConvSwinTransformerBlock()
:
从forward
中的# cyclic shift
开始看:
def forward(self, x):
'''
这里self.input_resolution在ConvSwinTransformerSys中定义:
input_resolution[0]=H/(2^i_layer);input_resolution[1]=W/(2^i_layer)
其中, i_layer=2
'''
H, W = self.input_resolution # H/4, W/4
B, L, C = x.shape # (B, H*W/16, 96)
assert L == H * W, "input feature has wrong size" # 判断数据是否正确
shortcut = x # (B, H*W/16, 96)
x = self.norm1(x) # (B, H*W/16, 96)
x = x.view(B, H, W, C) # (B, H/4, W/4, 96)
# cyclic shift
'''
torch.roll 函数接受两个参数:输入张量和滚动的偏移量。在这里,shifts=(-self.shift_size, -self.shift_size) 表示向左
上方滚动 self.shift_size 个位置。这意味着 x 中的元素将被沿着第一个维度(dim=1)和第二个维度(dim=2)同时向左移动
self.shift_size 个位置。
注意: 滚动操作不会改变张量的形状和元素的顺序,只是将元素按照指定的偏移量进行重新排列。
'''
if self.shift_size > 0: # 3
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
# 这里采用滚动,后面还要反滚动(reverse cyclic shift)复原窗口
else:
shifted_x = x # (B, H/4, W/4, 96)
'''
分割窗口:
shifted_x=(B, H/4, W/4, 96); self.window_size=7
具体算法:
(1)将shifted_x的H和W分别除以window_size得到张量得shape为:
(B, H/4/window_size, window_size, w/4/window_size, window_size, 96)
(2)改变上面新张量的shape为: windows=(B * H/4/window_size * w/4/window_size, window_size, window_size, 96)
其中,H/4/window_size * w/4/window_size为窗口数量,下面用nW表示窗口数量。即上式=(nW*B,window_size, window_size, 96)
''' # window_partition函数的实现在这段代码后面给出
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
# 改变shape,第1、2维相乘
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
# self.attn = WindowAttention(),跳转到2.2.2.1.1小节
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C) # [B, H*W, C]
x = shortcut + self.drop_path(x) # [B, H*W, C]+drop([B, H*W, C])=[B, H*W, C]
# FFN
x = x.view(B, H, W, C)
x = self.mlp(x) # [B, H, W, C]
x = x.view(B, H * W, C) # [B, H*W, C]
return x # [B, H*W, C]
# 到这里blk的循环就结束了, 跳转到2.2.2.(2)小节
类BasicLayer
:实现CST_Block
和Patch_merging
从forward
中的if self.downsample is not None:
开始看:
def forward(self, x): # (B, H*W/16, 96)
# self.blocks有2个ConvSwinTransformerBlock,即for循环执行 2 次
for blk in self.blocks:
if self.use_checkpoint: # False
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x) # [B, H*W, C]
if self.downsample is not None: # Patch_Merging
# downsample=PatchMerging, 接下来跳转到类PatchMerging
x = self.downsample(x) # [B, H*W, C]->[B,]
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
类PatchMerging()
:
从forward
中的H, W = self.input_resolution
开始看
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x): # [B, H*W, C]
H, W = self.input_resolution
B, L, C = x.shape # L = H*W
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
'''
解释一下操作符 "::" 的含义:
在 Python 中,start:stop:step 表示从索引 start 开始,到索引 stop-1 结束,每隔 step 个元素取
一个。如果不指定 start 和 stop,则默认从头开始或者到末尾结束。
举个例子解释代码:
x0 = x[:, 0::2, 0::2, :]:这行代码从输入张量 x 中按照步长为 2 在第一个维度、第二个维度进行子采样。
它选择了索引为偶数的行和列,得到的结果是原张量的一半高度和一半宽度,形状为 B (batch size) × H/2 × W/2 × C。
'''
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
#
x = torch.cat([x0, x1, x2, x3], -1) # [B, H/2, W/2, 4*C]
x = x.view(B, -1, 4 * C) # [B, H/2*W/2, 4*C]
x = self.norm(x) # [B, H/2*W/2, 4*C]
x = self.reduction(x) # [B, H/2*W/2, 4*C]->[B, H/2*W/2, 2*C]
return x # [B, H/2*W/2, 2*C]
# 到这里PatchMerging执行结束, 接下来跳转到2.2.2.(3)小节类BasicLayer
类BasicLayer
:实现CST_Block
和Patch_merging
从forward
中的return x
开始看:到这里其实类BasicLayer
也执行结束了,返回的张量shape为 [B, H/2 * W/2, 2 * C]。
def forward(self, x): # (B, H*W/16, 96)
# self.blocks有2个ConvSwinTransformerBlock,即for循环执行 2 次
for blk in self.blocks:
if self.use_checkpoint: # False
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x) # [B, H*W, C]
if self.downsample is not None: # Patch_Merging
# downsample=PatchMerging, 接下来跳转到类PatchMerging
x = self.downsample(x) # [B, H*W, C]->[B, H/2*W/2, 2*C]
return x # [B, H/2*W/2, 2*C]
# 执行结束, 跳转到2.2.(2)小节 class ConvSwinTransformerSys()
类ConvSwinTransformerSys()
与2.1小节相同,为简洁起见,在这里只展示要用到的代码段
从forward_features
中for layer in self.layers:
开始看
# Encoder and Bottleneck
def forward_features(self, x):
# 这里 x 还是在原始batch图片上进行三通道扩展后的数据
# 转到2.2.1小节 PatchEmbed
x = self.patch_embed(x) # (B,3,H,W)->(B, H/4 * W/4, 96)
# 是否加入绝对位置索引
if self.ape: # Flase
x = x + self.absolute_pos_embed
x = self.pos_drop(x) # 减少过拟合
x_downsample = []
'''
self.layer总共有4层:前三层含 CST_Block×2 和 Patch_merging×1,第四层只含有 CST_Block×2;
这里的 H 和 W 是图像原尺寸的高和宽
'''# 总共执行4次
for layer in self.layers:
x_downsample.append(x) # (B, H*W/16, C);(B, H*W/64, 2*C);(B, H*W/256, 4*C);(B, H*W/1024, 8*C)
# 跳转到 BasicLayer,见2.2.2小节
x = layer(x)
'''
上面layer循环结束后,得到两个参数:
(1)x_downsample[0]: (B, H*W/16, C);(B, H*W/64, 2*C);(B, H*W/256, 4*C);(B, H*W/1024, 8*C)
x_downsample[1]: (B, H*W/64, 2*C);(B, H*W/256, 4*C);(B, H*W/1024, 8*C)
x_downsample[2]: (B, H*W/256, 4*C);(B, H*W/1024, 8*C)
x_downsample[3]: (B, H*W/1024, 8*C)
(2)x:(B, H*W/1024, 8*C)
'''
x = self.norm(x) # (B, H*W/1024, 8*C) :B L C
return x, x_downsample
# 到这里类ConvSwinTransformerSys()中的forward_features执行结束,接下来跳转到2.3小节class ConvSwinTransformerSys()的forward部分
类ConvSwinTransformerSys()
与2.1小节相同,在这里只展示要用到的代码段
从forward
中x = self.forward_up_features(x, x_downsample)
开始看
def forward(self, x):
x, x_downsample = self.forward_features(x) # (B,3,H,W)
'''
(1)x_downsample[0]: (B, H*W/16, C)
x_downsample[1]: (B, H*W/64, 2*C)
x_downsample[2]: (B, H*W/256, 4*C)
x_downsample[3]: (B, H*W/1024, 8*C)
(2)x:(B, H*W/1024, 8*C)
'''# 跳转到forward_up_features,见下面代码
x = self.forward_up_features(x, x_downsample)
x = self.up_x4(x)
return x
函数forward_up_features
:从for inx, layer_up in enumerate(self.layers_up):
开始看
def forward_up_features(self, x, x_downsample):
'''
layers_up共有4层,详细结构在这段代码的后面
其中,
PatchExpand:
'''
for inx, layer_up in enumerate(self.layers_up):
if inx == 0:
# layer_up=PatchExpand, 接下来跳转到2.3.1小节class PatchExpand
x = layer_up(x) # (B, H*W/1024, 8*C)
else:
x = torch.cat([x, x_downsample[3 - inx]], -1)
x = self.concat_back_dim[inx](x)
x = layer_up(x)
x = self.norm_up(x) # B L C
return x
self.layers_up
的结构:
ModuleList(
(0): PatchExpand(
(up): Sequential(
(0): ConvTranspose2d(768, 384, kernel_size=(2, 2), stride=(2, 2))
(1): GELU()
)
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(drop): Dropout(p=0.2, inplace=False)
)
(1): BasicLayer_up(
(blocks): ModuleList(
(0): ConvSwinTransformerBlock(
dim=384, input_resolution=(14, 14), num_heads=12, window_size=7, shift_size=0, mlp_ratio=4.0
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=384, window_size=(7, 7), num_heads=12
(conv_proj_q): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_k): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_v): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): GELU()
)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath()
(mlp): Mlp(
(dwconv): Conv2d(384, 384, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=384)
(norm): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(pwconv1): Conv2d(384, 1536, kernel_size=(1, 1), stride=(1, 1))
(act): GELU()
(pwconv2): Conv2d(1536, 384, kernel_size=(1, 1), stride=(1, 1))
(drop_path): Identity()
)
)
(1): ConvSwinTransformerBlock(
dim=384, input_resolution=(14, 14), num_heads=12, window_size=7, shift_size=3, mlp_ratio=4.0
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=384, window_size=(7, 7), num_heads=12
(conv_proj_q): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_k): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_v): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): GELU()
)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath()
(mlp): Mlp(
(dwconv): Conv2d(384, 384, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=384)
(norm): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(pwconv1): Conv2d(384, 1536, kernel_size=(1, 1), stride=(1, 1))
(act): GELU()
(pwconv2): Conv2d(1536, 384, kernel_size=(1, 1), stride=(1, 1))
(drop_path): Identity()
)
)
)
(upsample): PatchExpand(
(up): Sequential(
(0): ConvTranspose2d(384, 192, kernel_size=(2, 2), stride=(2, 2))
(1): GELU()
)
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(drop): Dropout(p=0.2, inplace=False)
)
)
(2): BasicLayer_up(
(blocks): ModuleList(
(0): ConvSwinTransformerBlock(
dim=192, input_resolution=(28, 28), num_heads=6, window_size=7, shift_size=0, mlp_ratio=4.0
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=192, window_size=(7, 7), num_heads=6
(conv_proj_q): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_k): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_v): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): GELU()
)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath()
(mlp): Mlp(
(dwconv): Conv2d(192, 192, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=192)
(norm): LayerNorm((192,), eps=1e-06, elementwise_affine=True)
(pwconv1): Conv2d(192, 768, kernel_size=(1, 1), stride=(1, 1))
(act): GELU()
(pwconv2): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))
(drop_path): Identity()
)
)
(1): ConvSwinTransformerBlock(
dim=192, input_resolution=(28, 28), num_heads=6, window_size=7, shift_size=3, mlp_ratio=4.0
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=192, window_size=(7, 7), num_heads=6
(conv_proj_q): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_k): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_v): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): GELU()
)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath()
(mlp): Mlp(
(dwconv): Conv2d(192, 192, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=192)
(norm): LayerNorm((192,), eps=1e-06, elementwise_affine=True)
(pwconv1): Conv2d(192, 768, kernel_size=(1, 1), stride=(1, 1))
(act): GELU()
(pwconv2): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))
(drop_path): Identity()
)
)
)
(upsample): PatchExpand(
(up): Sequential(
(0): ConvTranspose2d(192, 96, kernel_size=(2, 2), stride=(2, 2))
(1): GELU()
)
(norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(drop): Dropout(p=0.2, inplace=False)
)
)
(3): BasicLayer_up(
(blocks): ModuleList(
(0): ConvSwinTransformerBlock(
dim=96, input_resolution=(56, 56), num_heads=3, window_size=7, shift_size=0, mlp_ratio=4.0
(norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=96, window_size=(7, 7), num_heads=3
(conv_proj_q): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_k): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_v): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
(1): GELU()
)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): Identity()
(mlp): Mlp(
(dwconv): Conv2d(96, 96, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=96)
(norm): LayerNorm((96,), eps=1e-06, elementwise_affine=True)
(pwconv1): Conv2d(96, 384, kernel_size=(1, 1), stride=(1, 1))
(act): GELU()
(pwconv2): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))
(drop_path): Identity()
)
)
(1): ConvSwinTransformerBlock(
dim=96, input_resolution=(56, 56), num_heads=3, window_size=7, shift_size=3, mlp_ratio=4.0
(norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
(attn): WindowAttention(
dim=96, window_size=(7, 7), num_heads=3
(conv_proj_q): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_k): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
)
(conv_proj_v): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
(1): Rearrange('b c h w -> b (h w) c')
(2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
(1): GELU()
)
(proj_drop): Dropout(p=0.0, inplace=False)
(softmax): Softmax(dim=-1)
)
(drop_path): DropPath()
(mlp): Mlp(
(dwconv): Conv2d(96, 96, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=96)
(norm): LayerNorm((96,), eps=1e-06, elementwise_affine=True)
(pwconv1): Conv2d(96, 384, kernel_size=(1, 1), stride=(1, 1))
(act): GELU()
(pwconv2): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))
(drop_path): Identity()
)
)
)
)
)
类PatchExpand
:
从forward
中的H, W = self.input_resolution
开始看
class PatchExpand(nn.Module):
def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.up = nn.Sequential(nn.ConvTranspose2d(dim, dim // dim_scale, kernel_size=2, stride=2), nn.GELU())
self.norm = norm_layer(dim)
self.drop = nn.Dropout(p=0.2)
def forward(self, x):
"""
x: B, H*W, C → B, H*2*W*2, C/2
"""
H, W = self.input_resolution # H/32, W/32
B, L, C = x.shape # (B, H*W/1024, 8*C)
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C) # (B, H/32, W/32, 8*C)
x = self.norm(x)
x = x.permute(0, 3, 1, 2) # (B, H/32, W/32, 8*C) -> (B, 8*C, H/32, W/32)
'''self.up:
(1)转置卷积ConvTranspose2d(8*C, 4*C, kernel_size=(2,2), stride=(2,2))
(2)GELU()
'''
x = self.up(x) # (B, 8*C, H/32, W/32)->(B, 4*C, H/16, W/16)
x = self.drop(x) # (B, 4*C, H/16, W/16)
# 代码里的C是x中的8*C
x = x.permute(0, 2, 3, 1).contiguous().view(B, -1, C // 2) # (B, H/16 * W/16, 4*C)
return x # (B, H/16 * W/16, 4*C)
# 到这里执行结束,接下来跳转到2.3.(1)
函数forward_up_features
:
从forward_up_features
中for inx, layer_up in enumerate(self.layers_up):
开始看
def forward_up_features(self, x, x_downsample):
'''
layers_up共有4层,详细结构在这段代码的后面
其中,
PatchExpand:
'''
# inx=1的情况
for inx, layer_up in enumerate(self.layers_up):
if inx == 0:
x = layer_up(x) # (B, H*W/1024, 8*C)
'''inx=1
(1)x_downsample[0]: (B, H*W/16, C)
x_downsample[1]: (B, H*W/64, 2*C)
x_downsample[2]: (B, H*W/256, 4*C)
x_downsample[3]: (B, H*W/1024, 8*C)
(2)x:(B, H/16 * W/16, 4*C)
'''
else:
x = torch.cat([x, x_downsample[3 - inx]], -1) # (B, H/16 * W/16, 8*C)
'''concat_back_dim的结构在该代码下面展示
concat_back_dim[1]: (B, H/16 * W/16, 8*C)->(B, H/16 * W/16, 4*C)
'''
x = self.concat_back_dim[inx](x)
# 跳转到2.3.2小节的class BasicLayer_up
x = layer_up(x)
x = self.norm_up(x) # B L C
return x
concat_back_dim
结构:
ModuleList(
(0): Sequential(
(0): Rearrange('b (h w) c -> b c h w', h=7, w=7)
(1): Conv2d(1536, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): GELU()
(3): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GELU()
(5): Dropout(p=0.2, inplace=False)
(6): Rearrange('b c h w -> b (h w) c', h=7, w=7)
)
(1): Sequential(
(0): Rearrange('b (h w) c -> b c h w', h=14, w=14)
(1): Conv2d(768, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): GELU()
(3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GELU()
(5): Dropout(p=0.2, inplace=False)
(6): Rearrange('b c h w -> b (h w) c', h=14, w=14)
)
(2): Sequential(
(0): Rearrange('b (h w) c -> b c h w', h=28, w=28)
(1): Conv2d(384, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): GELU()
(3): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GELU()
(5): Dropout(p=0.2, inplace=False)
(6): Rearrange('b c h w -> b (h w) c', h=28, w=28)
)
(3): Sequential(
(0): Rearrange('b (h w) c -> b c h w', h=56, w=56)
(1): Conv2d(192, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): GELU()
(3): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GELU()
(5): Dropout(p=0.2, inplace=False)
(6): Rearrange('b c h w -> b (h w) c', h=56, w=56)
)
)
类BasicLayer_up
:进入Decoder阶段
从forward
中的for blk in self.blocks:
开始看
class BasicLayer_up(nn.Module):
""" A basic Convolutional Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, upsample=None, use_checkpoint=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
ConvSwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
# patch merging layer
if upsample is not None:
self.upsample = PatchExpand(input_resolution, dim=dim, dim_scale=2, norm_layer=norm_layer)
else:
self.upsample = None
def forward(self, x): #(B, H/16 * W/16, 4*C)
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
'''blk:class ConvSwinTransformerBlock,即CST×2
这里是解码器阶段的CST,后面跟着一个上采样
'''
else:
x = blk(x) # (B, H/16 * W/16, 4*C)
# upsample = PatchExpand, 跳转到2.3.2.1小节
if self.upsample is not None:
x = self.upsample(x)
return x
类PatchExpand
:作为解码器的上采样
从forward
中的H, W = self.input_resolution
开始
class PatchExpand(nn.Module):
def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.up = nn.Sequential(nn.ConvTranspose2d(dim, dim // dim_scale, kernel_size=2, stride=2), nn.GELU())
self.norm = norm_layer(dim)
self.drop = nn.Dropout(p=0.2)
def forward(self, x):
"""这里的H、W不是图像的原尺寸
x: B, H*W, C → B, H*2*W*2, C/2
"""
H, W = self.input_resolution # H/16, W/16
B, L, C = x.shape # B, H/16 * W/16, 4C # C是原C
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C) # (B, H/16, W/16, 4*C)
x = self.norm(x)
x = x.permute(0, 3, 1, 2) # (B, 4*C, H/16, W/16)
# 实现上采样
x = self.up(x) # (B, 2*C, H/8, W/8)=(16,192,28,28)
x = self.drop(x)
x = x.permute(0, 2, 3, 1).contiguous().view(B, -1, C // 2) # (B, H/8 * W/8, 2C)=(16,28*28,192)
return x # (B, H/8 * W/8, 2C)
# 到这里,类BasicLayer_up中的self.upsample执行结束,接下来跳转到2.3.2.(1)节,即回到类BasicLayer_up中
类BasicLayer_up
:Decoder阶段
从forward
中的return x
开始看,即BasicLayer_up也执行结束了
def forward(self, x): #(B, H/16 * W/16, 4*C)
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
'''blk:class ConvSwinTransformerBlock,即CST×2
这里是解码器阶段的CST,后面跟着一个上采样
'''
else:
x = blk(x) # (B, H/16 * W/16, 4*C)
# upsample = PatchExpand, 跳转到2.3.2.1小节
if self.upsample is not None:
x = self.upsample(x)
return x # (B, H/8 * W/8, 2C)
# 执行结束,接下来跳转到2.3.(2)小节
函数forward_up_features
:
从forward_up_features
中for inx, layer_up in enumerate(self.layers_up):
开始看,到这inx=2
def forward_up_features(self, x, x_downsample):
'''
layers_up共有4层,详细结构在这段代码的后面
其中,
PatchExpand:
'''
# inx=1的情况
for inx, layer_up in enumerate(self.layers_up):
if inx == 0:
x = layer_up(x) # (B, H/32 * W/32, 8*C)
'''inx=2
(1)x_downsample[0]: (B, H*W/16, C)
x_downsample[1]: (B, H*W/64, 2*C)
x_downsample[2]: (B, H*W/256, 4*C)
x_downsample[3]: (B, H*W/1024, 8*C)
(2)x:(B, H/16 * W/16, 2*C)
'''
else: # 下面注释中的三个张量shape分别对应inx=1,inx=2,inx=3
x = torch.cat([x, x_downsample[3 - inx]], -1) # (B, H/16 * W/16, 8C); (B, H/8 * W/8, 4C);(B, H/4 * W/4, 2C)
'''concat_back_dim的结构在该代码下面展示
concat_back_dim[1]: (B, H/16 * W/16, 8*C)->(B, H/16 * W/16, 4*C)
concat_back_dim[2]: (B, H/8 * W/8, 4*C)->(B, H/8 * W/8, 2*C)
concat_back_dim[3]: (B, H/4 * W/4, 2*C)->(B, H/4 * W/4, C)
'''
x = self.concat_back_dim[inx](x) # (B, H/8 * W/8, 4*C)->(B, H/8 * W/8, 2*C)
# 跳转到class BasicLayer_up,再次进行CST×2,操作与上个阶段相同
x = layer_up(x) # inx=3后的结果: (B, H/4 * W/4, C),跳出循环
# (B, H/4 * W/4, C)
x = self.norm_up(x) # B L C: (B, H/4 * W/4, C)
return x
# 到这里forward_up_features执行结束,接下来跳转到2.4小节
类ConvSwinTransformerSys()
与2.1小节相同,在这里只展示要用到的代码段
从forward
中x = self.up_x4(x)
开始看
def forward(self, x):
x, x_downsample = self.forward_features(x) # (B,3,H,W)
'''
(1)x_downsample[0]: (B, H*W/16, C)
x_downsample[1]: (B, H*W/64, 2*C)
x_downsample[2]: (B, H*W/256, 4*C)
x_downsample[3]: (B, H*W/1024, 8*C)
(2)x:(B, H*W/1024, 8*C)
'''# 跳转到forward_up_features,见下面代码
x = self.forward_up_features(x, x_downsample)
# 函数up_x4,接下来跳转到2.4.1小节
x = self.up_x4(x) # (B, H/4 * W/4, C)
return x
函数up_x4
:
def up_x4(self, x): # (B, H/4 * W/4, C)
H, W = self.patches_resolution # H/4 * W/4
B, L, C = x.shape # B, H/4 * W/4, C
assert L == H * W, "input features has wrong size"
if self.final_upsample == "expand_first": # True
# up=FinalPatchExpand_X4,接下来跳转到2.4.1.1小节
x = self.up(x)
x = x.view(B, 4 * H, 4 * W, -1)
x = x.permute(0, 3, 1, 2) # B,C,H,W
x = self.output(x)
return x
类FinalPatchExpand_X4
:
class FinalPatchExpand_X4(nn.Module):
def __init__(self, input_resolution, dim, dim_scale=4, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.dim_scale = dim_scale
self.expand = nn.Linear(dim, 16 * dim, bias=False)
self.output_dim = dim
self.norm = norm_layer(self.output_dim)
def forward(self, x): # (B, H/4 * W/4, C):(16,3136,96)
"""
x: B, H*W, C → B, H*4*W*4, C
"""
H, W = self.input_resolution # H/4 , W/4
x = self.expand(x) # (B, H/4 * W/4, C)->(B, H/4 * W/4, 16*C)
B, L, C = x.shape # B, H/4 * W/4, 16C
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C) # (B, H/4, W/4, 16C)
'''rearrange:
p1=4; p2=4; c=96:即原C
b h w (p1 p2 c): B H/4 W/4 16C
b (h p1) (w p2) c: B H W C
'''
x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale,
c=C // (self.dim_scale ** 2)) # (B,H,W,C):(B,224,224,96)
x = x.view(B, -1, self.output_dim) # (B,H*W,C):(B,224*224,96)
x = self.norm(x)
return x # (B,H*W,C)
# 到这里FinalPatchExpand_X4执行结束,接下来跳转到2.4.1.(1)小节 def up_x4()
函数up_x4
:
从x = x.view(B, 4 * H, 4 * W, -1)
开始看
def up_x4(self, x): # (B, H/4 * W/4, C)
H, W = self.patches_resolution # H/4 * W/4
B, L, C = x.shape # B, H/4 * W/4, C
assert L == H * W, "input features has wrong size"
if self.final_upsample == "expand_first": # True
# up=FinalPatchExpand_X4,接下来跳转到2.4.1.1小节
x = self.up(x) # (B, H/4 * W/4, C)->(B,H*W,C)
# 这里的H和W是原尺寸的1/4
x = x.view(B, 4 * H, 4 * W, -1) # (B,H,W,C)
x = x.permute(0, 3, 1, 2) # (B,C,H,W)
x = self.output(x)
return x # (B,C,H,W)
# 到这里up_×4结束,然后跳转到class ConvSwinTransformerSys中forward结束部分,如下代码
class ConvSwinTransformerSys
结束:
从return x
开始,即已经执行结束了
def forward(self, x):
x, x_downsample = self.forward_features(x) # (B,3,H,W)
x = self.forward_up_features(x, x_downsample)
x = self.up_x4(x) # (B, H/4 * W/4, C)->(B,C,H,W)
return x # (B,C,H,W)
# 类class ConvSwinTransformerSys执行结束,接下来跳转到2.1小节
类CS_Unet
:
从forward
中的return logits
开始,即执行结束
def forward(self, x):
# 判断图片的channel是否为1, 如果为1就在通道方向上复制3次,使其变成三通道的图片。
if x.size()[1] == 1:
x = x.repeat(1,3,1,1) # (B,3,H,W)
# 进入 类ConvSwinTransformerSys,转到2.1小节
logits = self.CS_Unet(x) # (B,C,H,W)
return logits # (B,C,H,W)
# 终于,整个model流程完成
最后跳出outputs = model(image_batch)
语句!
到这里,model实现完成!!!!