前面我们已经安装了storm,storm有两种模式,一是本地模式,主要用于学习和测试,另一个是集群模式,实际生产中使用这种模式。本节将阐述如何使用本地模式的storm进行词频统计。
1 系统、软件以及前提约束
- CentOS 7 64 工作站 作者的机子ip是192.168.100.200,请读者根据自己实际情况设置
- idea 2018.1
2 操作
- 1 在idea中创建一个maven项目
- 2 修改pom.xml,在其中加入以下依赖
org.apache.spark
spark-core_2.11
2.2.0
org.scala-lang
scala-library
2.11.8
org.apache.hadoop
hadoop-client
2.6.0-cdh5.7.0
org.apache.hbase
hbase-client
2.0.0-cdh6.0.1
org.apache.storm
storm-core
org.slf4j
log4j-over-slf4j
1.2.1
等待下载jar包完毕。
- 3 在src/main/java中加入RandomSentenceSpout.java做数据源
import java.util.Map;
import java.util.Random;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector _collector;
Random _rand;
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
_collector = collector;
_rand = new Random();
}
public void nextTuple() {
String[] sentences = new String[] { "the cow jumped over the moon", "an apple a day keeps the doctor away" };
String sentence = sentences[_rand.nextInt(sentences.length)];
_collector.emit(new Values(sentence));
}
public void ack(Object id) {
}
public void fail(Object id) {
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
- 4 在src/main/java中加入SplitSentenceBolt.java做数据分割
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
public class SplitSentenceBolt extends BaseBasicBolt {
private static final long serialVersionUID = -1L;
public void execute(Tuple input, BasicOutputCollector collector) {
String sentence = input.getString(0);
String[] words = sentence.split(" ");
for (String word : words) {
word = word.trim();
if (!word.isEmpty()) {
word = word.toLowerCase();
collector.emit(new Values(word));
}
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
- 5 在src/main/java中添加WordCountBolt.java做单词统计
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import java.util.HashMap;
import java.util.Map;
public class WordCountBolt extends BaseBasicBolt {
private static final long serialVersionUID = -1L;
private Map counts = new HashMap();
public void execute(Tuple tuple, BasicOutputCollector collector) {
String word = tuple.getString(0);
Integer count = counts.get(word);
if (count == null) {
count = 0;
}
count++;
counts.put(word, count);
System.out.println(Thread.currentThread().getId() + "=========== word : " + word + " count: " + count);
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
- 6 在src/main/java中添加WordCountSub.java做流程约束和拓扑提交
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;
public class WordCountSub{
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 5);
builder.setBolt("split", new SplitSentenceBolt(), 8).shuffleGrouping("spout");
builder.setBolt("count", new WordCountBolt(), 12).fieldsGrouping("split", new Fields("word"));
Config conf = new Config();
conf.setNumWorkers(3);
conf.setNumAckers(1);
LocalCluster localCluster= new LocalCluster();
localCluster.submitTopology("test",conf,builder.createTopology());
}
}
- 7 鼠标右键执行WordCountSub.java,等待一阵子【也许较长,此过程很耗内存】,会在控制台看到输出。
以上就是使用storm的本地模式进行词频统计。