FastestDet---原理介绍

1.测试指标FastestDet---原理介绍_第1张图片
2.算法定位
FastestDet是设计用来接替yolo-fastest系列算法,相比于业界已有的轻量级目标检测算法如yolov5n, yolox-nano, nanoDet, pp-yolo-tiny, FastestDet和这些算法根本不是一个量级,FastestDet无论在速度还是参数量上,都是要小好几个数量级的,但是精度自然而然也比不过。FastestDet是针对计算资源紧缺的ARM平台设计的,突出单核效能,因为在实际业务场景中,不会把所有CPU资源都给推理框架做模型推理的,假如说你想在例如树莓派, RK3399, RK3568去跑实时目标检测,那么FastestDet是比较好的选择,或者移动端上不想占用太多cpu资源,也可以去用单核并设置cpu sleep去推理FastestDet,在低功耗的条件下运行算法。

3.算法特性
先说下FastestDet的几个重要特性: 1).单轻量化检测头 2).anchor-free 3).跨网格多候选目标 4).动态正负样本分配 5).简单的数据增强
3.1 单轻量化检测头
这个是对网络结构上对算法模型进行优化,主要是提升算法运行速度,简化后处理步骤,大家可以先看下这块的网络结构:
FastestDet---原理介绍_第2张图片
其实多检测头设计的是为了适应检测不同尺度物体目标,高分辨率的检测头负责检测小物体,低分辨的检测头负责检测大物体,一种分而治之的思想。我个人觉得根因在于感知野,不同尺度的物体所需要

你可能感兴趣的:(模型部署,算法,目标检测,计算机视觉)