机械设计用python_十大Python机器学习常用库 python开发,你用过你个?

请点击此处输入图片描述

1.Pipenv

Pipenv 是 Kenneth Reitz 的业余项目,旨在将其他软件包(例如 npm 和 yarn)整合到 Python 里。它不需要安装 virtualenv, virtualenvwrapper,不用管理 requirements.txt 文件,并且不用确保依赖版本的可复现性。通过 Pipenv,你可以在 Pipfile 中指定依赖项。该工具可生成一个 Pipfile.lock 文件,使你的构建更具确定性,避免产生难以查找的 Bug。

2.PyTorch

PyTorch是Facebook深度学习框架,源于 Torch 框架,同时改善了 Torch 框架,基于ython 语言,由于实现了动态计算图范式, PyTorch 已经成为众多研究人员的首选框架之一,可以计算梯度,而且非常快,可扩展性强。

3. Caffe2

Caffe2 支持分布式训练、部署(即使是在移动平台上),新的 CPU 和支持 CUDA 的硬件。PyTorch 可能更适合做研究,而 Caffe2 更加适合大规模部署,就像在 Facebook 上看到的那样。另外,你可以在 PyTorch 里构建并训练模型,同时用 Caffe2 部署。

4. Pendulum

Pendulum 的优势之一在于,它是 Python 标准 datetime 替代品,因此你可以轻松地将其与现有的代码集成,并且在你需要的时候才使用它的功能。Pendulum 的作者特别注意时间分区的处理,默认在每个实例中时间分区是可用的,并且以 UTC 计时。你也可以获得扩展 timedelta 来简化 datetime 的计算。

5. Dash

Dash 是一个可构建 Web 应用,尤其是数据可视化 Web 应用的纯 Python 开源库。它建立在 Flask、Plotly 和 React 之上,并提供这几个框架的函数抽象接口,从而开发者不必学习这些框架,高效开发。这些应用程序可在浏览器和移动设备中使用。

6. PyFlux

PyFlux 是专门针对时间序列开发的 Python 开源库。时间序列研究是统计学和经济学的子领域,其目的是用于描述时间序列的行为,同时也预测时序未来的行为状态。

7. Fire

Fire 是一个开源库,可以为任何 Python 项目自动生成一个命令行界面。你几乎不需要编写任何代码或者文档,你只需要调用一个 Fire 方法并把它传递给你想要的命令行界面:一个函数、一个对象、一个类、一个库,甚至不传递任何参数。

8. imbalanced-learn

imbalanced-learn 是一个 Python 库,它提供了相关的技术来解决数据不平衡的问题。另外,它和 scikit-learn 兼容,并且是 scikit-learn-contrib 项目的一部分,非常有用。

9. FlashText

FlashText 证明了算法和数据结构设计的重要性,即使对于简单的问题,更好的算法也能够轻松超越在快 CPU 上运行的朴素实现。

10. Luminoth

Luminoth 是一个用 TensorFlow 和 Sonnet 构建的开源的计算机视觉 Python 工具包。它可直接支持物体检测,背后支持的模型是 Faster R-CNN。

以上是10个受欢迎的机器学习库,你听说或者学习了哪几个呢?感兴趣的可以深入了解一下。

你可能感兴趣的:(机械设计用python)