Flink RoaringBitmap去重

1、RoaringBitmap的依赖

  

            org.roaringbitmap
            RoaringBitmap
            0.9.21

2、Demo去重

package com.gwm.driver;

import com.alibaba.fastjson.JSON;
import com.alibaba.flink.connectors.datahub.datastream.source.DatahubSourceFunction;
import com.aliyun.datahub.client.model.RecordEntry;
import com.gwm.pojo.EventSuccessInfo;
import com.gwm.utils.TimeToStampUtil;
import com.gwm.utils.getString;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFilterFunction;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.state.MapState;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.StringUtils;
import org.roaringbitmap.longlong.Roaring64Bitmap;
import scala.Tuple4;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;
import java.util.Properties;
import java.util.UUID;

/**
 * @author yangyingchun
 * @version 1.0
 * @date 2022/11/14 16:26
 */
public class EventOrderSuccessRoaringBitmap {
    private static String endPoint = "endPoint ";
    //private static String endPoint ="public endpoint";//公网访问(填写内网Endpoint,就不用填写公网Endpoint)。
    private static String projectName = "projectName ";
    private static String topicSourceName =  "topicSourceName ";
//    private static String topicSourceName =  "topicSourceName ";
    private static String accessId = "accessId ";
    private static String accessKey = "accessKey ";
    //设置消费的启动位点对应的时间。TimeToStampUtil.timeToStamp("2021-12-21") 此时间至少为当前时间
//    private static Long datahubStartInMs = TimeToStampUtil.timeToStamp("2023-02-23");
    private static Long datahubStartInMs = System.currentTimeMillis();
    private static Long datahubEndInMs=Long.MAX_VALUE;
    private static SimpleDateFormat sd = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
    private static SimpleDateFormat sd1 = new SimpleDateFormat("yyyy-MM-dd");
    private static Date startDate;

    static {
        try {
            startDate = sd1.parse(sd.format(new Date()));
        } catch (ParseException e) {
            e.printStackTrace();
        }
    }

    ;

    public static void main(String[] args) throws Exception {


        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.enableCheckpointing(3600000L);
//        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 2000L));
        env.setParallelism(1);
        DataStreamSource> aedata =  env.addSource(
                    new DatahubSourceFunction(
                            endPoint,
                            projectName,
                            topicSourceName,
                            accessId,
                            accessKey,
                            datahubStartInMs,
                            datahubEndInMs,
                            20L,
                            1000L,
                            1000
                    ));



        DataStream> aecollectordataDataStream = aedata.flatMap(new FlatMapFunction, Tuple4>() {
            @Override
            public void flatMap(List value, Collector> out) throws Exception {
                for (RecordEntry recordEntry : value) {

                    String phone = getString.getString(recordEntry, "customer_phone");
                    Long order_sn = Long.parseLong(getString.getString(recordEntry, "order_no"));
                    String brand = getString.getString(recordEntry, "brand");
                    String car_model = getString.getString(recordEntry, "car_model");
                    String action_time = "null".equals(getString.getString(recordEntry, "paid_at"))||"".equals(getString.getString(recordEntry, "paid_at"))?null:
                            sd.format(new Date(Long.parseLong(getString.getString(recordEntry, "paid_at"))/1000));
                    Double paid_amount = "null".equals(getString.getString(recordEntry, "paid_amount"))?null:
                            Double.parseDouble(getString.getString(recordEntry, "paid_amount"));
                    String name = getString.getString(recordEntry, "customer_name");
                    String operation_flag = getString.getString(recordEntry, "new_dts_sync_dts_after_flag");
                    String order_time = "null".equals(getString.getString(recordEntry, "order_time"))||"".equals(getString.getString(recordEntry, "order_time"))?null:
                            sd.format(new Date(Long.parseLong(getString.getString(recordEntry, "order_time"))/1000));
                    String order_state = getString.getString(recordEntry, "order_state"); //'订购成功'

                    Date add_time =
                            "null".equals(getString.getString(recordEntry, "order_time"))||"".equals(getString.getString(recordEntry, "order_time"))
                                    ?null
                                    :new Date(Long.parseLong(getString.getString(recordEntry, "order_time")) / 1000);
//                    startDate = sd1.parse(sd.format(new Date()));

                    System.out.println(order_state+"====startDate:"+startDate+"====paid_at:"+order_time+"=====phone+order_sn:"+phone+"--"+order_sn);
                    //这里有三个问题,
                    // 1、技术+业务:因为获取的是数据库操作日志,所以数据是重复的,(已经做了重复校验,确保不会重复发且无时效性)
                    // 2、技术:如果操作了历史数据,且用户的订单状态恰好还是订购成功时,也会触达,是不是要加限制,加的话加什么合适,
                    //    新增且当天(很多数据是获取不到时间的)?还是所有时间都推,再ma测加一个时间的控制条件
                    //    结论:空的也要,
                    // 3、业务:需要明确订购成功的规则,否则极易造成异常, order_state=12当前是订购成功 能复用吗
                    if (
//                            "12".equals(order_state)&&
                            "Y".equals(operation_flag)
//                             &&!StringUtils.isNullOrWhitespaceOnly(order_time)
//                             &&add_time.after(startDate)

                        ){
                        EventSuccessInfo eventSuccessInfo = new EventSuccessInfo(
                                phone
                                , order_sn
                                , brand
                                , car_model
                                , action_time
                                , paid_amount
                                , name
                                , operation_flag
                                ,order_time
                                ,order_state
                        );
                        //                    System.out.println(eventSuccessInfo);
                        Tuple4 tuple4
                                = new Tuple4(
                                "test_event_order_success"
                                ,eventSuccessInfo
                                ,UUID.randomUUID().toString().replace("-","")
                                ,System.currentTimeMillis()
                        );
                        out.collect(tuple4);
                    }
                }
            }
        });

        KeyedStream, String> tuple4StringKeyedStream
                = aecollectordataDataStream.keyBy(x -> x._2().getPhone());


//        StateTtlConfig ttlConfig = StateTtlConfig
//                .newBuilder(Time.days(2))
//                .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
//                .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
//                .build();

        //create StateDescriptor

        //这里进行状态注册通过bitmap高效存储实现去重,当然bitmap去重只适合bigint场景
        ValueStateDescriptor bitmapDescriptor = new ValueStateDescriptor(
                "Roaring64Bitmap",
                TypeInformation.of(new TypeHint() {
                }));


        //手机号去重逻辑 通过Roaring64Bitmap
        SingleOutputStreamOperator> map = tuple4StringKeyedStream.filter(new RichFilterFunction>() {
            //1.定义状态 进行手机号去重
            private transient ValueState bitmapState;
            @Override
            public void open(Configuration parameters) throws Exception {

                // 设置状态生命周期
//                StateTtlConfig stateTtlConfig = new StateTtlConfig
//                        .Builder(Time.days(1)) // 周期为1天
//                        .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite) // 创建或者更新状态时重新刷新生命周期
//                        .build();

                bitmapState = getRuntimeContext().getState(bitmapDescriptor);;
            }
            @Override
            public boolean filter(Tuple4 value) throws Exception {
                //由于本程序只筛选订购成功的,所以每个手机号+每个订单唯一确认一条数据(订单状态已经在上游过滤过了)
                Roaring64Bitmap bitmap = bitmapState.value();
                if (bitmap == null) {
                    bitmap = new Roaring64Bitmap();
                }
                if (!bitmap.contains(value._2().getOrder_sn())) {
                    bitmap.addLong(value._2().getOrder_sn());
                    bitmapState.update(bitmap);
                    return true;
                }
                return false;
            }

        });

        //因为是binlog,但需求只要数据时间是当天的 :通过flink定时器 定义每天零晨更新比较时间
        SingleOutputStreamOperator> process = map.keyBy(x -> x._2().getPhone()).process(new KeyedProcessFunction, Tuple4>() {
            //1.定义状态 进行手机号去重
            private ValueState timeSate;
            @Override
            public void processElement(Tuple4 value, Context ctx, Collector> out) throws Exception {
                //获取格林威治标准时间的第二天00:00:00即获取北京时间的第二天08:00:00
//                long ts = (ctx.timerService().currentProcessingTime() / (1000 * 60 * 60 * 24) + 1) * (1000 * 60 * 60 * 24);
                //获取北京时间的第二天00:00:00
                long ts = ( ctx.timerService().currentProcessingTime()/(1000*60*60*24) + 1) * (1000*60*60*24)- 8 * 60 * 60 * 1000;

//                long ts = 1677054000000L;
                //如果注册相同数据的TimeTimer,后面的会将前面的覆盖,即相同的timeTimer只会触发一次
                ctx.timerService().registerProcessingTimeTimer(ts);
                out.collect(value);
            }

            @Override
            public void onTimer(long timestamp, OnTimerContext ctx, Collector> out) throws Exception {
                //定时器质性,每天凌晨更新开始时间
//                System.out.println(timestamp);
                System.out.println("定时器执行了:" + timestamp);
                //状态初始化
                timeSate.clear();
                startDate = sd1.parse(sd.format(new Date()));
                System.out.println(startDate);
//                startDate = sd1.parse("2023-02-01");
            }
        });

        SingleOutputStreamOperator> jsonString = process.map(new MapFunction, Tuple4>() {
            @Override
            public Tuple4 map(Tuple4 value) throws Exception {
                return new Tuple4(
                        value._1(),
                        JSON.toJSONString(value._2()),
                        value._3(),
                        value._4()
                );
            }
        });


        jsonString.print();
//        jsonString.addSink(new EventOmsSuccessSink());


        env.execute("EventOrderSuccess===>");

    }
}

3、注意:Roaring64Bitmap 去重只适合去重整形情况

你可能感兴趣的:(flink,flink,java,实时去重,高效去重,RoaringBitmap)