SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)

1.初识Sentinel

1.1.雪崩问题及解决方案

1.1.1.雪崩问题

微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第1张图片

如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第2张图片

但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第3张图片

服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。

那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第4张图片

1.1.2.超时处理

解决雪崩问题的常见方式有四种:

•超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第5张图片

1.1.3.仓壁模式

方案2:仓壁模式

仓壁模式来源于船舱的设计:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第6张图片

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。

于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第7张图片

1.1.4.断路器

断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

断路器会统计访问某个服务的请求数量,异常比例:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第8张图片

当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第9张图片

1.1.5.限流

流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第10张图片

1.1.6.总结

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

1.2.服务保护技术对比

在SpringCloud当中支持多种服务保护技术:

  • Netfix Hystrix
  • Sentinel
  • Resilience4J

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

Sentinel Hystrix
隔离策略 信号量隔离 线程池隔离/信号量隔离
熔断降级策略 基于慢调用比例或异常比例 基于失败比率
实时指标实现 滑动窗口 滑动窗口(基于 RxJava)
规则配置 支持多种数据源 支持多种数据源
扩展性 多个扩展点 插件的形式
基于注解的支持 支持 支持
限流 基于 QPS,支持基于调用关系的限流 有限的支持
流量整形 支持慢启动、匀速排队模式 不支持
系统自适应保护 支持 不支持
控制台 开箱即用,可配置规则、查看秒级监控、机器发现等 不完善
常见框架的适配 Servlet、Spring Cloud、Dubbo、gRPC 等 Servlet、Spring Cloud Netflix

1.3.Sentinel介绍和安装

1.3.1.初识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

1.3.2.安装Sentinel

1)下载

sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。

资料也提供了下载好的jar包:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g2R3xdLd-1668350372717)(assets/image-20210715174252531.png)]

2)运行

将jar包放到任意非中文目录,执行命令:

java -jar sentinel-dashboard-1.8.1.jar

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项 默认值 说明
server.port 8080 服务端口
sentinel.dashboard.auth.username sentinel 默认用户名
sentinel.dashboard.auth.password sentinel 默认密码

例如,修改端口:

java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar

3)访问

访问http://localhost:8080页面,就可以看到sentinel的控制台了:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第11张图片

需要输入账号和密码,默认都是:sentinel

登录后,发现一片空白,什么都没有:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第12张图片

这是因为我们还没有与微服务整合。

1.4.微服务整合Sentinel

我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

1)引入sentinel依赖


<dependency>
    <groupId>com.alibaba.cloudgroupId> 
    <artifactId>spring-cloud-starter-alibaba-sentinelartifactId>
dependency>

2)配置控制台

修改application.yaml文件,添加下面内容:

server:
  port: 8088
spring:
  cloud: 
    sentinel:
      transport:
        dashboard: localhost:8080

3)访问order-service的任意端点

打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。

然后再访问sentinel的控制台,查看效果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第13张图片

2.流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。

2.1.簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第14张图片

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制
  • 降级:降级熔断
  • 热点:热点参数限流,是限流的一种
  • 授权:请求的权限控制

2.1.快速入门

2.1.1.示例

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第15张图片

表单中可以填写限流规则,如下:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第16张图片

其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。

2.1.2.练习:

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。

1)首先在sentinel控制台添加限流规则

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第17张图片

2)利用jmeter测试

如果没有用过jmeter,可以参考资料提供的文档《Jmeter快速入门.md》

资料提供了编写好的Jmeter测试样例:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第18张图片

打开jmeter,导入资料提供的测试样例:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第19张图片

选择:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第20张图片

20个用户,2秒内运行完,QPS是10,超过了5.

选中流控入门,QPS<5右键运行:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第21张图片

注意,不要点击菜单中的执行按钮来运行。

结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第22张图片

可以看到,成功的请求每次只有5个

2.2.流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第23张图片

快速入门测试的就是直接模式。

2.2.1.关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

配置规则

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第24张图片

语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1)定义/order/query端点,模拟订单查询

@GetMapping("/query")
public String queryOrder() {
    return "查询订单成功";
}

2)定义/order/update端点,模拟订单更新

@GetMapping("/update")
public String updateOrder() {
    return "更新订单成功";
}

重启服务,查看sentinel控制台的簇点链路:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第25张图片

3)配置流控规则

对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Bo82SfKN-1668350372722)(assets/image-20210716101934499.png)]

在表单中填写流控规则:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第26张图片

4)在Jmeter测试

选择《流控模式-关联》:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第27张图片

可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第28张图片

请求的目标是/order/update,这样这个断点就会触发阈值。

但限流的目标是/order/query,我们在浏览器访问,可以发现:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第29张图片

确实被限流了。

5)总结

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第30张图片

2.2.2.链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

配置示例

例如有两条请求链路:

  • /test1 --> /common

  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第31张图片

实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务

  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法

  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法

  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

实现:

1)添加查询商品方法

在order-service服务中,给OrderService类添加一个queryGoods方法:

public void queryGoods(){
    System.err.println("查询商品");
}
2)查询订单时,查询商品

在order-service的OrderController中,修改/order/query端点的业务逻辑:

@GetMapping("/query")
public String queryOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.out.println("查询订单");
    return "查询订单成功";
}
3)新增订单,查询商品

在order-service的OrderController中,修改/order/save端点,模拟新增订单:

@GetMapping("/save")
public String saveOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.err.println("新增订单");
    return "新增订单成功";
}
4)给查询商品添加资源标记

默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。

给OrderService的queryGoods方法添加@SentinelResource注解:

@SentinelResource("goods")
public void queryGoods(){
    System.err.println("查询商品");
}

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合

重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第32张图片

5)添加流控规则

点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第33张图片

只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。

6)Jmeter测试

选择《流控模式-链路》:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第34张图片

可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2

一个http请求是访问/order/save:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第35张图片

运行的结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第36张图片

完全不受影响。

另一个是访问/order/query:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第37张图片

运行结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第38张图片

每次只有2个通过。

2.2.3.总结

流控模式有哪些?

•直接:对当前资源限流

•关联:高优先级资源触发阈值,对低优先级资源限流。

•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

2.3.流控效果

在流控的高级选项中,还有一个流控效果选项:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第39张图片

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

2.3.1.warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第40张图片

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第41张图片

2)Jmeter测试

选择《流控效果,warm up》:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第42张图片

QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第43张图片

随着时间推移,成功比例越来越高:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第44张图片

到Sentinel控制台查看实时监控:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第45张图片

一段时间后:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第46张图片

2.3.2.排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第47张图片

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第48张图片

平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1)添加流控规则

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第49张图片

2)Jmeter测试

选择《流控效果,队列》:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第50张图片

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第51张图片

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第52张图片

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。

当队列满了以后,才会有部分请求失败:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第53张图片

2.3.3.总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

2.4.热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

2.4.1.全局参数限流

例如,一个根据id查询商品的接口:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第54张图片

访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第55张图片

当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。

配置示例:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-esLTcXjl-1668350372730)(assets/image-20210716115232426.png)]

代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

2.4.2.热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第56张图片

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

•如果参数值是100,则每1秒允许的QPS为10

•如果参数值是101,则每1秒允许的QPS为15

2.4.4.案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

•默认的热点参数规则是每1秒请求量不超过2

•给102这个参数设置例外:每1秒请求量不超过4

•给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第57张图片

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第58张图片

这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第59张图片

点击新增,填写表单:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第60张图片

3)Jmeter测试

选择《热点参数限流 QPS1》:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第61张图片

这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PTcpn8XH-1668350372732)(assets/image-20210716120840501.png)]

运行结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第62张图片

例外项,QPS阈值为4

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第63张图片

运行结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第64张图片

例外项,QPS阈值为10

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第65张图片

运行结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第66张图片

3.隔离和降级

限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。

而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

线程隔离之前讲到过:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第67张图片

熔断降级:是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第68张图片

可以看到,不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。需要在调用方 发起远程调用时做线程隔离、或者服务熔断。

而我们的微服务远程调用都是基于Feign来完成的,因此我们需要将Feign与Sentinel整合,在Feign里面实现线程隔离和服务熔断。

3.1.FeignClient整合Sentinel

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

3.1.1.修改配置,开启sentinel功能

修改OrderService的application.yml文件,开启Feign的Sentinel功能:

feign:
  sentinel:
    enabled: true # 开启feign对sentinel的支持

3.1.2.编写失败降级逻辑

业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。

给FeignClient编写失败后的降级逻辑

①方式一:FallbackClass,无法对远程调用的异常做处理

②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

这里我们演示方式二的失败降级处理。

步骤一:在feing-api项目中定义类,实现FallbackFactory:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第69张图片

代码:

package cn.itcast.feign.clients.fallback;

import cn.itcast.feign.clients.UserClient;
import cn.itcast.feign.pojo.User;
import feign.hystrix.FallbackFactory;
import lombok.extern.slf4j.Slf4j;

@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
    @Override
    public UserClient create(Throwable throwable) {
        return new UserClient() {
            @Override
            public User findById(Long id) {
                log.error("查询用户异常", throwable);
                return new User();
            }
        };
    }
}

步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
    return new UserClientFallbackFactory();
}

步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

import cn.itcast.feign.clients.fallback.UserClientFallbackFactory;
import cn.itcast.feign.pojo.User;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;

@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {

    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

重启后,访问一次订单查询业务,然后查看sentinel控制台,可以看到新的簇点链路:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第70张图片

3.1.3.总结

Sentinel支持的雪崩解决方案:

  • 线程隔离(仓壁模式)
  • 降级熔断

Feign整合Sentinel的步骤:

  • 在application.yml中配置:feign.sentienl.enable=true
  • 给FeignClient编写FallbackFactory并注册为Bean
  • 将FallbackFactory配置到FeignClient

3.2.线程隔离(舱壁模式)

3.2.1.线程隔离的实现方式

线程隔离有两种方式实现:

  • 线程池隔离

  • 信号量隔离(Sentinel默认采用)

如图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第71张图片

线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。

两者的优缺点:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第72张图片

3.2.2.sentinel的线程隔离

用法说明

在添加限流规则时,可以选择两种阈值类型:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第73张图片

  • QPS:就是每秒的请求数,在快速入门中已经演示过

  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现线程隔离(舱壁模式)。

案例需求:给 order-service服务中的UserClient的查询用户接口设置流控规则,线程数不能超过 2。然后利用jemeter测试。

1)配置隔离规则

选择feign接口后面的流控按钮:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6LrgRh68-1668350372736)(assets/image-20210716123831992.png)]

填写表单:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第74张图片

2)Jmeter测试

选择《阈值类型-线程数<2》:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第75张图片

一次发生10个请求,有较大概率并发线程数超过2,而超出的请求会走之前定义的失败降级逻辑。

查看运行结果:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第76张图片

发现虽然结果都是通过了,不过部分请求得到的响应是降级返回的null信息。

3.2.3.总结

线程隔离的两种手段是?

  • 信号量隔离

  • 线程池隔离

信号量隔离的特点是?

  • 基于计数器模式,简单,开销小

线程池隔离的特点是?

  • 基于线程池模式,有额外开销,但隔离控制更强

3.3.熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器控制熔断和放行是通过状态机来完成的:

在这里插入图片描述

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用、异常比例、异常数

3.3.1.慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。

例如:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第77张图片

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

案例

需求:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5

1)设置慢调用

修改user-service中的/user/{id}这个接口的业务。通过休眠模拟一个延迟时间:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第78张图片

此时,orderId=101的订单,关联的是id为1的用户,调用时长为60ms:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第79张图片

orderId=102的订单,关联的是id为2的用户,调用时长为非常短;

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第80张图片

2)设置熔断规则

下面,给feign接口设置降级规则:

在这里插入图片描述

规则:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第81张图片

超过50ms的请求都会被认为是慢请求

3)测试

在浏览器访问:http://localhost:8088/order/101,快速刷新5次,可以发现:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第82张图片

触发了熔断,请求时长缩短至5ms,快速失败了,并且走降级逻辑,返回的null

在浏览器访问:http://localhost:8088/order/102,竟然也被熔断了:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第83张图片

3.3.2.异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。

例如,一个异常比例设置:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第84张图片

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。

一个异常数设置:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第85张图片

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断。

案例

需求:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

1)设置异常请求

首先,修改user-service中的/user/{id}这个接口的业务。手动抛出异常,以触发异常比例的熔断:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第86张图片

也就是说,id 为 2时,就会触发异常

2)设置熔断规则

下面,给feign接口设置降级规则:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JeV4OWvx-1668350372740)(assets/image-20210716150654094.png)]

规则:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hdHuIjEj-1668350372740)(assets/image-20210716151538785.png)]

在5次请求中,只要异常比例超过0.4,也就是有2次以上的异常,就会触发熔断。

3)测试

在浏览器快速访问:http://localhost:8088/order/102,快速刷新5次,触发熔断:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第87张图片

此时,我们去访问本来应该正常的103:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第88张图片

4.授权规则

授权规则可以对请求方来源做判断和控制。

4.1.授权规则

4.1.1.基本规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源(origin)在白名单内的调用者允许访问

  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

点击左侧菜单的授权,可以看到授权规则:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第89张图片

  • 资源名:就是受保护的资源,例如/order/{orderId}

  • 流控应用:是来源者的名单,

    • 如果是勾选白名单,则名单中的来源被许可访问。
    • 如果是勾选黑名单,则名单中的来源被禁止访问。

比如:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第90张图片

我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)

4.1.2.如何获取origin

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

public interface RequestOriginParser {
    /**
     * 从请求request对象中获取origin,获取方式自定义
     */
    String parseOrigin(HttpServletRequest request);
}

这个方法的作用就是从request对象中,获取请求者的origin值并返回。

默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。

因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin

例如order-service服务中,我们定义一个RequestOriginParser的实现类:

package cn.itcast.order.sentinel;

import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.RequestOriginParser;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;

import javax.servlet.http.HttpServletRequest;

@Component
public class HeaderOriginParser implements RequestOriginParser {
    @Override
    public String parseOrigin(HttpServletRequest request) {
        // 1.获取请求头
        String origin = request.getHeader("origin");
        // 2.非空判断
        if (StringUtils.isEmpty(origin)) {
            origin = "blank";
        }
        return origin;
    }
}

我们会尝试从request-header中获取origin值。

4.1.3.给网关添加请求头

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头

这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。

修改gateway服务中的application.yml,添加一个defaultFilter:

spring:
  cloud:
    gateway:
      default-filters:
        - AddRequestHeader=origin,gateway
      routes:
       # ...略

这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头。

4.1.4.配置授权规则

接下来,我们添加一个授权规则,放行origin值为gateway的请求。

在这里插入图片描述

配置如下:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第91张图片

现在,我们直接跳过网关,访问order-service服务:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第92张图片

通过网关访问:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第93张图片

4.2.自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。

4.2.1.异常类型

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

public interface BlockExceptionHandler {
    /**
     * 处理请求被限流、降级、授权拦截时抛出的异常:BlockException
     */
    void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}

这个方法有三个参数:

  • HttpServletRequest request:request对象
  • HttpServletResponse response:response对象
  • BlockException e:被sentinel拦截时抛出的异常

这里的BlockException包含多个不同的子类:

异常 说明
FlowException 限流异常
ParamFlowException 热点参数限流的异常
DegradeException 降级异常
AuthorityException 授权规则异常
SystemBlockException 系统规则异常

4.2.2.自定义异常处理

下面,我们就在order-service定义一个自定义异常处理类:

package cn.itcast.order.sentinel;

import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.authority.AuthorityException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowException;
import org.springframework.stereotype.Component;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
        String msg = "未知异常";
        int status = 429;

        if (e instanceof FlowException) {
            msg = "请求被限流了";
        } else if (e instanceof ParamFlowException) {
            msg = "请求被热点参数限流";
        } else if (e instanceof DegradeException) {
            msg = "请求被降级了";
        } else if (e instanceof AuthorityException) {
            msg = "没有权限访问";
            status = 401;
        }

        response.setContentType("application/json;charset=utf-8");
        response.setStatus(status);
        response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
    }
}

重启测试,在不同场景下,会返回不同的异常消息.

限流:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第94张图片

授权拦截时:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第95张图片

5.规则持久化

现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。

5.1.规则管理模式

规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式
  • push模式

5.1.1.pull模式

pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第96张图片

5.1.2.push模式

push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第97张图片

5.2.实现push模式

详细步骤可以参考资料的《sentinel规则持久化》

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第98张图片

6.分布式事务问题

6.1.本地事务

本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第99张图片

6.2.分布式事务

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务
  • 跨服务的分布式事务
  • 综合情况

在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:

  • 创建新订单
  • 扣减商品库存
  • 从用户账户余额扣除金额

完成上面的操作需要访问三个不同的微服务和三个不同的数据库。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第100张图片

订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。

但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。

此时ACID难以满足,这是分布式事务要解决的问题

6.3.演示分布式事务问题

我们通过一个案例来演示分布式事务的问题:

1)创建数据库,名为seata_demo,然后导入资料提供的SQL文件:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-feTW2jSu-1668352494310)(assets/image-20210724165634571.png)]

2)导入资料提供的微服务:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bQIwwVAf-1668352494311)(assets/image-20210724165709994.png)]

微服务结构如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A5wAwwbM-1668352494311)(assets/image-20210724165729273.png)]

其中:

seata-demo:父工程,负责管理项目依赖

  • account-service:账户服务,负责管理用户的资金账户。提供扣减余额的接口
  • storage-service:库存服务,负责管理商品库存。提供扣减库存的接口
  • order-service:订单服务,负责管理订单。创建订单时,需要调用account-service和storage-service

3)启动nacos、所有微服务

4)测试下单功能,发出Post请求:

请求如下:

curl --location --request POST 'http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=20&money=200'

如图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第101张图片

测试发现,当库存不足时,如果余额已经扣减,并不会回滚,出现了分布式事务问题。

6.理论基础

解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。

6.1.CAP定理

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第102张图片

它们的第一个字母分别是 C、A、P。

Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。

6.1.1.一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。

比如现在包含两个节点,其中的初始数据是一致的:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第103张图片

当我们修改其中一个节点的数据时,两者的数据产生了差异:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第104张图片

要想保住一致性,就必须实现node01 到 node02的数据 同步:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第105张图片

6.1.2.可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。

如图,有三个节点的集群,访问任何一个都可以及时得到响应:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第106张图片

当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第107张图片

6.1.3.分区容错

Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第108张图片

Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务

6.1.4.矛盾

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。

当节点接收到新的数据变更时,就会出现问题了:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第109张图片

如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。

如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。

也就是说,在P一定会出现的情况下,A和C之间只能实现一个。

6.2.BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

  • Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
  • **Soft State(软状态):**在一定时间内,允许出现中间状态,比如临时的不一致状态。
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。

6.3.解决分布式事务的思路

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。

  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC)

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第110张图片

这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务

7.初识Seata

Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。

官网地址:http://seata.io/,其中的文档、播客中提供了大量的使用说明、源码分析。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第111张图片

7.1.Seata的架构

Seata事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚。

  • TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务。

  • RM (Resource Manager) - **资源管理器:**管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

整体的架构如图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第112张图片

Seata基于上述架构提供了四种不同的分布式事务解决方案:

  • XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
  • TCC模式:最终一致的分阶段事务模式,有业务侵入
  • AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
  • SAGA模式:长事务模式,有业务侵入

无论哪种方案,都离不开TC,也就是事务的协调者。

7.2.部署TC服务

参考资料提供的文档《 seata的部署和集成.md 》:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第113张图片

7.3.微服务集成Seata

我们以order-service为例来演示。

7.3.1.引入依赖

首先,在order-service中引入依赖:


<dependency>
    <groupId>com.alibaba.cloudgroupId>
    <artifactId>spring-cloud-starter-alibaba-seataartifactId>
    <exclusions>
         
        <exclusion>
            <artifactId>seata-spring-boot-starterartifactId>
            <groupId>io.seatagroupId>
        exclusion>
    exclusions>
dependency>
<dependency>
    <groupId>io.seatagroupId>
    <artifactId>seata-spring-boot-starterartifactId>
    
    <version>${seata.version}version>
dependency>

7.3.2.配置TC地址

在order-service中的application.yml中,配置TC服务信息,通过注册中心nacos,结合服务名称获取TC地址:

seata:
  registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
    type: nacos # 注册中心类型 nacos
    nacos:
      server-addr: 127.0.0.1:8848 # nacos地址
      namespace: "" # namespace,默认为空
      group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
      application: seata-tc-server # seata服务名称
      username: nacos
      password: nacos
  tx-service-group: seata-demo # 事务组名称
  service:
    vgroup-mapping: # 事务组与cluster的映射关系
      seata-demo: SH

微服务如何根据这些配置寻找TC的地址呢?

我们知道注册到Nacos中的微服务,确定一个具体实例需要四个信息:

  • namespace:命名空间
  • group:分组
  • application:服务名
  • cluster:集群名

以上四个信息,在刚才的yaml文件中都能找到:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第114张图片

namespace为空,就是默认的public

结合起来,TC服务的信息就是:public@DEFAULT_GROUP@seata-tc-server@SH,这样就能确定TC服务集群了。然后就可以去Nacos拉取对应的实例信息了。

7.3.3.其它服务

其它两个微服务也都参考order-service的步骤来做,完全一样。

8.动手实践

下面我们就一起学习下Seata中的四种不同的事务模式。

8.1.XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。

8.1.1.两阶段提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。

正常情况:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第115张图片

异常情况:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第116张图片

一阶段:

  • 事务协调者通知每个事物参与者执行本地事务
  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作
    • 如果一阶段都成功,则通知所有事务参与者,提交事务
    • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

8.1.2.Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第117张图片

RM一阶段的工作:

​ ① 注册分支事务到TC

​ ② 执行分支业务sql但不提交

​ ③ 报告执行状态到TC

TC二阶段的工作:

  • TC检测各分支事务执行状态

    a.如果都成功,通知所有RM提交事务

    b.如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

8.1.3.优缺点

XA模式的优点是什么?

  • 事务的强一致性,满足ACID原则。
  • 常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

  • 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
  • 依赖关系型数据库实现事务

8.1.4.实现XA模式

Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:

1)修改application.yml文件(每个参与事务的微服务),开启XA模式:

seata:
  data-source-proxy-mode: XA

2)给发起全局事务的入口方法添加@GlobalTransactional注解:

本例中是OrderServiceImpl中的create方法.

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第118张图片

3)重启服务并测试

重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。

8.2.AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

8.2.1.Seata的AT模型

基本流程图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第119张图片

阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

8.2.2.流程梳理

我们用一个真实的业务来梳理下AT模式的原理。

比如,现在又一个数据库表,记录用户余额:

id money
1 100

其中一个分支业务要执行的SQL为:

update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

一阶段:

1)TM发起并注册全局事务到TC

2)TM调用分支事务

3)分支事务准备执行业务SQL

4)RM拦截业务SQL,根据where条件查询原始数据,形成快照。

{
    "id": 1, "money": 100
}

5)RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90

6)RM报告本地事务状态给TC

二阶段:

1)TM通知TC事务结束

2)TC检查分支事务状态

​ a)如果都成功,则立即删除快照

​ b)如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100

流程图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第120张图片

8.2.3.AT与XA的区别

简述AT模式与XA模式最大的区别是什么?

  • XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
  • XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
  • XA模式强一致;AT模式最终一致

8.2.4.脏写问题

在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第121张图片

解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第122张图片

8.2.5.优缺点

AT模式的优点:

  • 一阶段完成直接提交事务,释放数据库资源,性能比较好
  • 利用全局锁实现读写隔离
  • 没有代码侵入,框架自动完成回滚和提交

AT模式的缺点:

  • 两阶段之间属于软状态,属于最终一致
  • 框架的快照功能会影响性能,但比XA模式要好很多

8.2.6.实现AT模式

AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。

只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。

1)导入数据库表,记录全局锁

导入资料提供的Sql文件:seata-at.sql,其中lock_table导入到TC服务关联的数据库,undo_log表导入到微服务关联的数据库:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第123张图片

2)修改application.yml文件,将事务模式修改为AT模式即可:

seata:
  data-source-proxy-mode: AT # 默认就是AT

3)重启服务并测试

8.3.TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留;

  • Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。

  • Cancel:预留资源释放,可以理解为try的反向操作。

8.3.1.流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。

  • 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30

初识余额:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AVuy44di-1668352494317)(assets/image-20210724182424907.png)]

余额充足,可以冻结:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0YZqkj53-1668352494317)(assets/image-20210724182457951.png)]

此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。

  • 阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30

确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mTJHN1z7-1668352494318)(assets/image-20210724182706011.png)]

此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元

  • 阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30

需要回滚,那么就要释放冻结金额,恢复可用金额:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MQZFyAoz-1668352494318)(assets/image-20210724182810734.png)]

8.3.2.Seata的TCC模型

Seata中的TCC模型依然延续之前的事务架构,如图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第124张图片

8.3.3.优缺点

TCC模式的每个阶段是做什么的?

  • Try:资源检查和预留
  • Confirm:业务执行和提交
  • Cancel:预留资源的释放

TCC的优点是什么?

  • 一阶段完成直接提交事务,释放数据库资源,性能好
  • 相比AT模型,无需生成快照,无需使用全局锁,性能最强
  • 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库

TCC的缺点是什么?

  • 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
  • 软状态,事务是最终一致
  • 需要考虑Confirm和Cancel的失败情况,做好幂等处理

8.3.4.事务悬挂和空回滚

1)空回滚

当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚

如图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第125张图片

执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。

2)业务悬挂

对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂

执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

8.3.5.实现TCC模式

解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel?

1)思路分析

这里我们定义一张表:

CREATE TABLE `account_freeze_tbl` (
  `xid` varchar(128) NOT NULL,
  `user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
  `freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
  `state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
  PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;

其中:

  • xid:是全局事务id
  • freeze_money:用来记录用户冻结金额
  • state:用来记录事务状态

那此时,我们的业务开怎么做呢?

  • Try业务:
    • 记录冻结金额和事务状态到account_freeze表
    • 扣减account表可用金额
  • Confirm业务
    • 根据xid删除account_freeze表的冻结记录
  • Cancel业务
    • 修改account_freeze表,冻结金额为0,state为2
    • 修改account表,恢复可用金额
  • 如何判断是否空回滚?
    • cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
  • 如何避免业务悬挂?
    • try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务

接下来,我们改造account-service,利用TCC实现余额扣减功能。

2)声明TCC接口

TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,

我们在account-service项目中的cn.itcast.account.service包中新建一个接口,声明TCC三个接口:

package cn.itcast.account.service;

import io.seata.rm.tcc.api.BusinessActionContext;
import io.seata.rm.tcc.api.BusinessActionContextParameter;
import io.seata.rm.tcc.api.LocalTCC;
import io.seata.rm.tcc.api.TwoPhaseBusinessAction;

@LocalTCC
public interface AccountTCCService {

    @TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
    void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
                @BusinessActionContextParameter(paramName = "money")int money);

    boolean confirm(BusinessActionContext ctx);

    boolean cancel(BusinessActionContext ctx);
}
3)编写实现类

在account-service服务中的cn.itcast.account.service.impl包下新建一个类,实现TCC业务:

package cn.itcast.account.service.impl;

import cn.itcast.account.entity.AccountFreeze;
import cn.itcast.account.mapper.AccountFreezeMapper;
import cn.itcast.account.mapper.AccountMapper;
import cn.itcast.account.service.AccountTCCService;
import io.seata.core.context.RootContext;
import io.seata.rm.tcc.api.BusinessActionContext;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {

    @Autowired
    private AccountMapper accountMapper;
    @Autowired
    private AccountFreezeMapper freezeMapper;

    @Override
    @Transactional
    public void deduct(String userId, int money) {
        // 0.获取事务id
        String xid = RootContext.getXID();
        // 1.扣减可用余额
        accountMapper.deduct(userId, money);
        // 2.记录冻结金额,事务状态
        AccountFreeze freeze = new AccountFreeze();
        freeze.setUserId(userId);
        freeze.setFreezeMoney(money);
        freeze.setState(AccountFreeze.State.TRY);
        freeze.setXid(xid);
        freezeMapper.insert(freeze);
    }

    @Override
    public boolean confirm(BusinessActionContext ctx) {
        // 1.获取事务id
        String xid = ctx.getXid();
        // 2.根据id删除冻结记录
        int count = freezeMapper.deleteById(xid);
        return count == 1;
    }

    @Override
    public boolean cancel(BusinessActionContext ctx) {
        // 0.查询冻结记录
        String xid = ctx.getXid();
        AccountFreeze freeze = freezeMapper.selectById(xid);

        // 1.恢复可用余额
        accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
        // 2.将冻结金额清零,状态改为CANCEL
        freeze.setFreezeMoney(0);
        freeze.setState(AccountFreeze.State.CANCEL);
        int count = freezeMapper.updateById(freeze);
        return count == 1;
    }
}

8.4.SAGA模式

Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。

其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。

Seata官网对于Saga的指南:https://seata.io/zh-cn/docs/user/saga.html

8.4.1.原理

在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第126张图片

Saga也分为两个阶段:

  • 一阶段:直接提交本地事务
  • 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚

8.4.2.优缺点

优点:

  • 事务参与者可以基于事件驱动实现异步调用,吞吐高
  • 一阶段直接提交事务,无锁,性能好
  • 不用编写TCC中的三个阶段,实现简单

缺点:

  • 软状态持续时间不确定,时效性差
  • 没有锁,没有事务隔离,会有脏写

8.5.四种模式对比

我们从以下几个方面来对比四种实现:

  • 一致性:能否保证事务的一致性?强一致还是最终一致?
  • 隔离性:事务之间的隔离性如何?
  • 代码侵入:是否需要对业务代码改造?
  • 性能:有无性能损耗?
  • 场景:常见的业务场景

如图:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第127张图片

9.高可用

Seata的TC服务作为分布式事务核心,一定要保证集群的高可用性。

9.1.高可用架构模型

搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。

但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾。

比如一个TC集群在上海,另一个TC集群在杭州:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第128张图片

微服务基于事务组(tx-service-group)与TC集群的映射关系,来查找当前应该使用哪个TC集群。当SH集群故障时,只需要将vgroup-mapping中的映射关系改成HZ。则所有微服务就会切换到HZ的TC集群了。

9.2.实现高可用

具体实现请参考资料提供的文档《seata的部署和集成.md》:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第129张图片

第三章节:

SpringCloud_微服务保护(Sentinel)&分布式事务(Seata)_第130张图片

你可能感兴趣的:(springcloud,微服务)