pytorch可视化,画模型图以及参数计算

未整理Pytorch使用tensorboardX可视化
pytorch tensorboard_tutorial

一、模型可视化

一个简单的网络可视化工具:torchsummary
安装方法:

pip install torchsummary

源代码地址
当然还有增强版:torchsummaryX

例一:VGG网络可视化

>>> import torch, torchvision
>>> model = torchvision.models.vgg.vgg16()
>>> from torchsummary import summary
>>> summary(model, (3, 224, 224))  # (model, input_size, batch_size=-1, device="cuda")
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 224, 224]           1,792
              ReLU-2         [-1, 64, 224, 224]               0
            Conv2d-3         [-1, 64, 224, 224]          36,928
              ReLU-4         [-1, 64, 224, 224]               0
         MaxPool2d-5         [-1, 64, 112, 112]               0
            Conv2d-6        [-1, 128, 112, 112]          73,856
              ReLU-7        [-1, 128, 112, 112]               0
            Conv2d-8        [-1, 128, 112, 112]         147,584
              ReLU-9        [-1, 128, 112, 112]               0
        MaxPool2d-10          [-1, 128, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]         295,168
             ReLU-12          [-1, 256, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]         590,080
             ReLU-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 256, 56, 56]         590,080
             ReLU-16          [-1, 256, 56, 56]               0
        MaxPool2d-17          [-1, 256, 28, 28]               0
           Conv2d-18          [-1, 512, 28, 28]       1,180,160
             ReLU-19          [-1, 512, 28, 28]               0
           Conv2d-20          [-1, 512, 28, 28]       2,359,808
             ReLU-21          [-1, 512, 28, 28]               0
           Conv2d-22          [-1, 512, 28, 28]       2,359,808
             ReLU-23          [-1, 512, 28, 28]               0
        MaxPool2d-24          [-1, 512, 14, 14]               0
           Conv2d-25          [-1, 512, 14, 14]       2,359,808
             ReLU-26          [-1, 512, 14, 14]               0
           Conv2d-27          [-1, 512, 14, 14]       2,359,808
             ReLU-28          [-1, 512, 14, 14]               0
           Conv2d-29          [-1, 512, 14, 14]       2,359,808
             ReLU-30          [-1, 512, 14, 14]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
           Linear-32                 [-1, 4096]     102,764,544
             ReLU-33                 [-1, 4096]               0
          Dropout-34                 [-1, 4096]               0
           Linear-35                 [-1, 4096]      16,781,312
             ReLU-36                 [-1, 4096]               0
          Dropout-37                 [-1, 4096]               0
           Linear-38                 [-1, 1000]       4,097,000
================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.59
Params size (MB): 527.79
Estimated Total Size (MB): 746.96
----------------------------------------------------------------

参考

例二:自定义网络可视化

class Convnet(nn.Module):  # 重写module
    def __init__(self, x_dim, hid_dim=64, z_dim=64):
        super().__init__()
        self.encoder = nn.Sequential(
            # 4层卷积
            conv_block(x_dim, hid_dim),
            conv_block(hid_dim, hid_dim),
            conv_block(hid_dim, hid_dim),
            conv_block(hid_dim, z_dim)
        )

    def forward(self, x):
        x = self.encoder(x)
        flatten = x.view(x.size(0), -1)
        return flatten

from torchsummary import summary
model = Convnet(x_dim=3)
summary(model=model, input_size=(3, 64, 64), device="cpu")  # cpu计算

# 结果
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 64, 64]           1,792
       BatchNorm2d-2           [-1, 64, 64, 64]             128
              ReLU-3           [-1, 64, 64, 64]               0
         MaxPool2d-4           [-1, 64, 32, 32]               0
            Conv2d-5           [-1, 64, 32, 32]          36,928
       BatchNorm2d-6           [-1, 64, 32, 32]             128
              ReLU-7           [-1, 64, 32, 32]               0
         MaxPool2d-8           [-1, 64, 16, 16]               0
            Conv2d-9           [-1, 64, 16, 16]          36,928
      BatchNorm2d-10           [-1, 64, 16, 16]             128
             ReLU-11           [-1, 64, 16, 16]               0
        MaxPool2d-12             [-1, 64, 8, 8]               0
           Conv2d-13             [-1, 64, 8, 8]          36,928
      BatchNorm2d-14             [-1, 64, 8, 8]             128
             ReLU-15             [-1, 64, 8, 8]               0
        MaxPool2d-16             [-1, 64, 4, 4]               0
================================================================
Total params: 113,088
Trainable params: 113,088
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.05
Forward/backward pass size (MB): 8.63
Params size (MB): 0.43
Estimated Total Size (MB): 9.11
----------------------------------------------------------------


二、图像可视化

1 安装Visdom模块

pip install visdom

2 启动服务器

程序运行过程中保持服务器开启:

python -m visdom.server

3 例一(以单通道图像28*28为例)

from visdom import Visdom
vis = Visdom()

# 显示单张图片
vis.image(tensor[1,28,28])  # 只展示格式

# 显示多张图片
vis.images(tensor[5,1,28,28])

4 例二

结果:

你可能感兴趣的:(pytorch可视化,画模型图以及参数计算)