x的x次方求导以及此类换元法进阶

一、对x的x次方求导

问题描述:对 x x x^x xx 求导

解决:

y = x x y = x^x y=xx,对两边求自然对数
ln ⁡ y = x ln ⁡ x d ln ⁡ y d x = d ( x ln ⁡ x ) d x d ln ⁡ y d y d y d x = 1 + ln ⁡ x d y d x = ( 1 + ln ⁡ x ) y d y d x = ( 1 + ln ⁡ x ) x x x ˙ = ( 1 + ln ⁡ x ) x x \begin{align} \ln y &= x \ln x \\ \frac{\mathrm{d}\ln y}{\mathrm{d}x} &= \frac{\mathrm{d} ( x \ln x )} {\mathrm{d}x}\\ \frac{\mathrm{d}\ln y}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 + \ln x \\ \frac{\mathrm{d}y}{\mathrm{d}x} & = (1 + \ln x)y \\ \frac{\mathrm{d}y}{\mathrm{d}x} & = (1 + \ln x)x^x \\ \dot x &= (1 + \ln x)x^x \\ \end{align} lnydxdlnydydlnydxdydxdydxdyx˙=xlnx=dxd(xlnx)=1+lnx=(1+lnx)y=(1+lnx)xx=(1+lnx)xx
可以看到这一类次方函数的求导需要构造一个 y y y 来进行求解,我们接下来进阶

二、进阶

温馨提示,本章涉及到了大量的求导链式法则,所以还不是很懂这部分内容的小伙伴可以先去补补课,本节的内容对于想要研究高阶滑模算法的小伙伴有很大帮助,反正我是为了研究这个问题。

因为我们这章数学是为了控制服务的,这里我们直接选择一个简单二阶系统
{ x ˙ 1 = x 2 x ˙ 2 = u \begin{align} \begin{cases} \dot x_1 = x_2 \\ \dot x_2 = u \\ \end{cases} \end{align} {x˙1=x2x˙2=u
求下面等式对时间 t t t 导数,其中函数 s i g n sign sign 为符号函数y
y = ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 s i g n ( x 1 ) \begin{align} y = |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}} sign(x_1) \end{align} y=x11+μx12λx12sign(x1)
先对两边同时求导解决符号函数的问题
y ′ = ( ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 ) ′ s i g n ( x 1 ) + ( ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 ) ( s i g n ( x 1 ) ) ′ = ( ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 ) ′ s i g n ( x 1 ) \begin{align} y' = \left(|x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}}\right)' sign(x_1) + \left(|x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}}\right)\left(sign(x_1)\right)'=\left(|x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}}\right)' sign(x_1) \end{align} y=(x11+μx12λx12)sign(x1)+(x11+μx12λx12)(sign(x1))=(x11+μx12λx12)sign(x1)
z z z 为上式的第一部分,只需要对 z z z 求导即可
z = ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 ln ⁡ z = λ x 1 2 1 + μ x 1 2 ln ⁡ ∣ x 1 ∣ d ln ⁡ z d t = d ( λ x 1 2 1 + μ x 1 2 ln ⁡ ∣ x 1 ∣ ) d t d ln ⁡ z d z d z d t = d ( λ x 1 2 1 + μ x 1 2 ) d t ln ⁡ ∣ x 1 ∣ + d ln ⁡ ∣ x 1 ∣ d t λ x 1 2 1 + μ x 1 2 \begin{align} z &= |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}} \\ \ln z & = \frac{\lambda x_1^2}{1+\mu x_1^2} \ln |x_1| \\ \frac{\mathrm{d}\ln z}{\mathrm{d}t} & = \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \ln |x_1| \right)}{\mathrm{d}t} \\ \frac{\mathrm{d}\ln z}{\mathrm{d}z}\frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \right)}{\mathrm{d}t} \ln |x_1| + \frac{\mathrm{d} \ln |x_1|}{\mathrm{d}t} \frac{\lambda x_1^2}{1+\mu x_1^2} \\ \end{align} zlnzdtdlnzdzdlnzdtdz=x11+μx12λx12=1+μx12λx12lnx1=dtd(1+μx12λx12lnx1)=dtd(1+μx12λx12)lnx1+dtdlnx11+μx12λx12
等式右侧分为两部分,两部分分别求,首先是第一部分
d ( λ x 1 2 1 + μ x 1 2 ) d t = d ( λ x 1 2 1 + μ x 1 2 ) d x 1 2 d x 1 2 d x 1 d x 1 d t = ( λ ( 1 + μ x 1 2 ) − λ x 1 2 μ ( 1 + μ x 1 2 ) 2 ) 2 x 1 x ˙ 1 = 2 λ x 1 x 2 ( 1 + μ x 1 2 ) 2 \begin{align} \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \right)}{\mathrm{d}t} & = \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \right)}{\mathrm{d}x_1^2} \frac{\mathrm{d} x_1^2}{\mathrm{d}x_1}\frac{\mathrm{d} x_1}{\mathrm{d}t} \\ &= \left( \frac{\lambda(1+\mu x_1^2) - \lambda x_1^2 \mu}{(1+\mu x_1^2)^2} \right) 2 x_1 \dot x_1 \\ &= \frac{2\lambda x_1 x_2}{(1+\mu x_1^2)^2} \end{align} dtd(1+μx12λx12)=dx12d(1+μx12λx12)dx1dx12dtdx1=((1+μx12)2λ(1+μx12)λx12μ)2x1x˙1=(1+μx12)22λx1x2
其次是第二部分
d ln ⁡ ∣ x 1 ∣ d t = d ln ⁡ ∣ x 1 ∣ d ∣ x 1 ∣ d ∣ x 1 ∣ d x 1 d x 1 d t = 1 ∣ x 1 ∣ s i g n ( x 1 ) x 2 = x 2 x 1 \begin{align} \frac{\mathrm{d} \ln |x_1|}{\mathrm{d}t} = \frac{\mathrm{d} \ln |x_1|}{\mathrm{d}|x_1|} \frac{\mathrm{d} |x_1|}{\mathrm{d}x_1} \frac{\mathrm{d} x_1}{\mathrm{d}t} = \frac{1}{|x_1|} sign(x_1) x_2 = \frac{x_2}{x_1} \end{align} dtdlnx1=dx1dlnx1dx1dx1dtdx1=x11sign(x1)x2=x1x2
将这两部分带入对 z z z 的求导部分可得
d ln ⁡ z d z d z d t = d ( λ x 1 2 1 + μ x 1 2 ) d t ln ⁡ ∣ x 1 ∣ + d ln ⁡ ∣ x 1 ∣ d t λ x 1 2 1 + μ x 1 2 1 z d z d t = 2 λ x 1 x 2 ( 1 + μ x 1 2 ) 2 ln ⁡ ∣ x 1 ∣ + λ x 1 x 2 1 + μ x 1 2 1 z d z d t = λ x 1 x 2 1 + μ x 1 2 ( 2 ln ⁡ ∣ x 1 ∣ 1 + μ x 1 2 + 1 ) d z d t = λ x 1 x 2 1 + μ x 1 2 ( 2 ln ⁡ ∣ x 1 ∣ 1 + μ x 1 2 + 1 ) ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 \begin{align} \frac{\mathrm{d}\ln z}{\mathrm{d}z}\frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \right)}{\mathrm{d}t} \ln |x_1| + \frac{\mathrm{d} \ln |x_1|}{\mathrm{d}t} \frac{\lambda x_1^2}{1+\mu x_1^2} \\ \frac{1}{z}\frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{2\lambda x_1 x_2}{(1+\mu x_1^2)^2} \ln|x_1| + \frac{\lambda x_1 x_2}{1+\mu x_1^2} \\ \frac{1}{z}\frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{\lambda x_1 x_2}{1+\mu x_1^2} \left(\frac{2 \ln|x_1|}{1+\mu x_1^2} + 1\right) \\ \frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{\lambda x_1 x_2}{1+\mu x_1^2} \left(\frac{2 \ln|x_1|}{1+\mu x_1^2} + 1\right) |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}} \\ \end{align} dzdlnzdtdzz1dtdzz1dtdzdtdz=dtd(1+μx12λx12)lnx1+dtdlnx11+μx12λx12=(1+μx12)22λx1x2lnx1+1+μx12λx1x2=1+μx12λx1x2(1+μx122lnx1+1)=1+μx12λx1x2(1+μx122lnx1+1)x11+μx12λx12
z z z 带回 y ′ y' y 可得
d y d t = λ x 1 x 2 1 + μ x 1 2 ( 2 ln ⁡ ∣ x 1 ∣ 1 + μ x 1 2 + 1 ) ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 s i g n ( x 1 ) = λ ∣ x 1 ∣ x 2 1 + μ x 1 2 ( 2 ln ⁡ ∣ x 1 ∣ 1 + μ x 1 2 + 1 ) ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 \begin{align} \frac{\mathrm{d} y}{\mathrm{d}t} &= \frac{\lambda x_1 x_2}{1+\mu x_1^2} \left(\frac{2 \ln|x_1|}{1+\mu x_1^2} + 1\right) |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}} sign(x_1) \\ &= \frac{\lambda |x_1| x_2}{1+\mu x_1^2} \left(\frac{2 \ln|x_1|}{1+\mu x_1^2} + 1\right) |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}}\\ \end{align} dtdy=1+μx12λx1x2(1+μx122lnx1+1)x11+μx12λx12sign(x1)=1+μx12λx1x2(1+μx122lnx1+1)x11+μx12λx12

你可能感兴趣的:(math,算法,机器学习,人工智能)