给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 "" 。
注意:
对于 t 中重复字符,我们寻找的子字符串中该字符数量必须不少于 t 中该字符数量。
如果 s 中存在这样的子串,我们保证它是唯一的答案。
示例 1:
输入:s = "ADOBECODEBANC", t = "ABC"
输出:"BANC"
示例 2:
输入:s = "a", t = "a"
输出:"a"
示例 3:
输入: s = "a", t = "aa"
输出: ""
解释: t 中两个字符 'a' 均应包含在 s 的子串中,
因此没有符合条件的子字符串,返回空字符串。
提示:
1 <= s.length, t.length <= 105
s 和 t 由英文字母组成
进阶:你能设计一个在 o(n) 时间内解决此问题的算法吗?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-window-substring
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public:
string minWindow(string s, string t) {
unordered_map need,window;
for(char c:t){
need[c]++;
}
int left=0,right=0,valid=0;
//记录最小覆盖子串的起始索引和长度
int start=0,len=INT_MAX;
while(right
滑动窗口算法的代码框架:
/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
unordered_map need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 右移窗口
right++;
// 进行窗口内数据的一系列更新
...
/*** debug 输出的位置 ***/
printf("window: [%d, %d)\n", left, right);
/********************/
// 判断左侧窗口是否要收缩
while (window needs shrink) {
// d 是将移出窗口的字符
char d = s[left];
// 左移窗口
left++;
// 进行窗口内数据的一系列更新
...
}
}
}
unordered_map
就是哈希表(字典),它的一个方法 count(key)
相当于 Java 的 containsKey(key)
可以判断键 key 是否存在。
可以使用方括号访问键对应的值 map[key]
。需要注意的是,如果该 key
不存在,C++ 会自动创建这个 key,并把 map[key]
赋值为 0。
所以代码中多次出现的 map[key]++
相当于 Java 的 map.put(key, map.getOrDefault(key, 0) + 1)
初始化 window
和 need
两个哈希表,记录窗口中的字符和需要凑齐的字符:
valid
变量表示窗口中满足 need
条件的字符个数,如果 valid
和 need.size
的大小相同,则说明窗口已满足条件,已经完全覆盖了串 T
。
套滑动窗口模板,只需要思考以下四个问题:
1、当移动
right
扩大窗口,即加入字符时,应该更新哪些数据?2、什么条件下,窗口应该暂停扩大,开始移动
left
缩小窗口?3、当移动
left
缩小窗口,即移出字符时,应该更新哪些数据?4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?
如果一个字符进入窗口,应该增加
window
计数器;如果一个字符将移出窗口的时候,应该减少window
计数器;当valid
满足need
时应该收缩窗口;应该在收缩窗口的时候更新最终结果。
滑动窗口算法的思路是这样:
1、我们在字符串 S
中使用双指针中的左右指针技巧,初始化 left = right = 0
,把索引左闭右开区间 [left, right)
称为一个「窗口」。
2、我们先不断地增加 right
指针扩大窗口 [left, right)
,直到窗口中的字符串符合要求(包含了 T
中的所有字符)。
3、此时,我们停止增加 right
,转而不断增加 left
指针缩小窗口 [left, right)
,直到窗口中的字符串不再符合要求(不包含 T
中的所有字符了)。同时,每次增加 left
,我们都要更新一轮结果。
4、重复第 2 和第 3 步,直到 right
到达字符串 S
的尽头。
这个思路其实也不难,第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解,也就是最短的覆盖子串。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动,这就是「滑动窗口」这个名字的来历。
下面画图理解一下,needs
和 window
相当于计数器,分别记录 T
中字符出现次数和「窗口」中的相应字符的出现次数。
初始状态:
增加 right
,直到窗口 [left, right]
包含了 T
中所有字符:
现在开始增加 left
,缩小窗口 [left, right]
。
直到窗口中的字符串不再符合要求,left
不再继续移动。
之后重复上述过程,先移动 right
,再移动 left
…… 直到 right
指针到达字符串 S
的末端,算法结束。