一个RNA-seq实战-超级简单-2小时搞定

这是原帖http://www.bio-info-trainee.com/2218.html
http://www.bio-info-trainee.com/2218.html
准备工作:

安装WSL,并将源换成国内源;

在D盘建立文件夹bs用来放生信软件,文件夹data用来放下载的数据,data下建立文件夹fastq用来放测序数据,gtf用来放注释文件,hg19用来放index文件,map用来放比对排序等文件。

1、数据下载

数据在GEO地址是:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50177,可知RNA-Seq数据为:

Run Sample

SRR957680 siSUZ12_BiolRep2

SRR957679 siSUZ12_BiolRep1

SRR957678 siCtrl_BiolRep2

SRR957677 siCtrl_BiolRep1

for i in {77..80}; do wget ftp://ftp-trace.ncbi.nlm.nih.gov ... /SRR/SRR957/SRR9576${i}/SRR9576{i}.sra; done

2、数据处理

(1)安装软件

wget https://ftp-trace.ncbi.nlm.nih.g ... 2-1-ubuntu64.tar.gz

tar -zxvf sratoolkit.2.8.2-1-ubuntu64.tar.gz

echo ‘PATH =$PATH:/mnt/d/bs/sratoolkit.2.8.1-1/bin’ >> ~/.bashrc

source ~/.bashrc

(2)将sra文件转化为fastq格式

for i in {77..80};do fastq-dump --gzip --split-3 -O /mnt/d/data/fastq -A /mnt/d/data/SRR9576${i}.sra;done

(3)下载安装FastQC软件

sudo apt install fastqc

(4)对fastq文件进行质控

ls *.gz | while read id; do fastqc $id -o /mnt/d/data/fastqc -t 4; done

3、序列比对

(1)下载index文件:

wget -c ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/data/hg19.tar.gz

tar zxvf hg19.tar.gz

(2)下载安装hisat2软件

sudo apt install hisat2

(3)正式比对

for i in {77..80};do hisat2 -t -x /mnt/d/data/hg19/genome -U /mnt/d/data/fastq/SRR9576{i}.sam;done

(4)下载安装SAMtools软件

sudo apt install samtools

(5)SAMtools转换为bam排序

for i in {77..80}; do samtools view -S SRR9576{i}.bam; samtools sort SRR9576{i}_sorted.bam; samtools index SRR9576${i}_sorted.bam; done

4、reads计数

(1)下载安装HTSeq-count软件

sudo apt-get install python-numpy python-matplotlib python-pysam python-htseq

(2)下载注释文件

wget ftp://ftp.sanger.ac.uk/pub/genco ... 7.annotation.gtf.gz

gzip -d gencode.v26lift37.annotation.gtf.gz

(3)htseq-count计数

for i in {77..80}; do htseq-count -s no -f bam /mnt/d/data/map/SRR9576{i}.count; done

(4)合成表达矩阵(在R中操作)

(i)分别读取count文件

options(stringsAsFactors = FALSE)

m_control_1<-read.table("d:/data/map/SRR957677.count",sep="\t",col.names=c("gene_id","m_control1"))

m_control_2<-read.table("d:/data/map/SRR957678.count",sep="\t",col.names=c("gene_id","m_control2"))

m_case_1<-read.table("d:/data/map/SRR957679.count",sep="\t",col.names=c("gene_id","m_suz1"))

m_case_2<-read.table("d:/data/map/SRR957680.count",sep="\t",col.names=c("gene_id","m_suz2"))

(ii)按照gene_id合并

m_raw_count<-merge(merge(m_control_1,m_control_2,by="gene_id"),merge(m_case_1,m_case_2,by="gene_id"))

write.csv(m_raw_count,file="d:/data/map/m_raw_count.txt",quote=FALSE,row.names=FALSE) #见附件

(iii)简单分析

summary(m_raw_count)

5、差异表达分析(在R中进行操作)

(1)安装DESeq2

install.packages("BiocManager")

BiocManager::install("DESeq2")

BiocManager::install("GenomeInfoDbData")

library(DESeq2)

(2)差异表达分析

database<-read.table(file="d:/data/map/m_raw_count.txt",sep=",",header=T,row.names=1)

database<-round(as.matrix(database))

condition<-factor(c(rep("control",2),rep("suz",2)),levels=c("control","suz"))

coldata<-data.frame(row.names=colnames(database),condition)

dds<-DESeqDataSetFromMatrix(countData=database,colData=coldata,design=~condition)

dds <- dds[rowSums(counts(dds))>1,]

dds <- DESeq(dds)

res <- results(dds)

(3)提取差异分析结果

res <- res[order(res$padj),]

diff_gene <- subset(res,padj<0.05 & (log2FoldChange>1 | log2FoldChange < -1))

diff_gene <- row.names(diff_gene)

resdata <- merge(as.data.frame(res),as.data.frame(counts(dds,normalized=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file="d:/data/map/control_vs_suz.csv",row.names=F) #得到csv格式的差异表达分析结果

到此运行正常,但后续用clusterProfiler做富集分析时出错,出错提示见附图。请教一下是哪一步有错误?

你可能感兴趣的:(一个RNA-seq实战-超级简单-2小时搞定)