23.Flink-高级特性-新特性-Streaming Flie Sink\介绍\代码演示\Flink-高级特性-新特性-FlinkSQL整合Hive\添加依赖和jar包和配置

23.Flink-高级特性-新特性-Streaming Flie Sink
23.1.介绍
23.2.代码演示
24.Flink-高级特性-新特性-FlinkSQL整合Hive
24.1.介绍
24.2.版本
24.3.添加依赖和jar包和配置
24.4.FlinkSQL整合Hive-CLI命令行整合
24.5.FlinkSQL整合Hive-代码整合

23.Flink-高级特性-新特性-Streaming Flie Sink

23.1.介绍

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/connectors/streamfile_sink.html
https://blog.csdn.net/u013220482/article/details/100901471
23.Flink-高级特性-新特性-Streaming Flie Sink\介绍\代码演示\Flink-高级特性-新特性-FlinkSQL整合Hive\添加依赖和jar包和配置_第1张图片

23.2.代码演示

import org.apache.commons.lang3.SystemUtils;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.core.fs.Path;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.OutputFileConfig;
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;
import org.apache.flink.util.Collector;

import java.util.concurrent.TimeUnit;

/**
 * 演示Flink StreamingFileSink将流式数据写入到HDFS 数据一致性由Checkpoint + 两阶段提交保证
 *
 * @author tuzuoquan
 * @date 2022/6/21 20:05
 */
public class StreamingFileSinkDemo {

    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //开启Checkpoint
        //===========类型1:必须参数=============
        //设置Checkpoint的时间间隔为1000ms做一次Checkpoint/其实就是每隔1000ms发一次Barrier!
        env.enableCheckpointing(1000);
        if (SystemUtils.IS_OS_WINDOWS) {
            env.setStateBackend(new FsStateBackend("file:///D:/ckp"));
        } else {
            env.setStateBackend(new FsStateBackend("hdfs://node1:8020/flink-checkpoint/checkpoint"));
        }
        //===========类型2:建议参数===========
        //设置两个Checkpoint 之间最少等待时间,如设置Checkpoint之间最少是要等 500ms(为了避免每隔1000ms做一次Checkpoint的时候,前一次太慢和后一次重叠到一起去了)
        //如:高速公路上,每隔1s关口放行一辆车,但是规定了两车之前的最小车距为500m
        //默认是0
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
        //设置如果在做Checkpoint过程中出现错误,是否让整体任务失败:true是  false不是
        //env.getCheckpointConfig().setFailOnCheckpointingErrors(false);//默认是true
        //默认值为0,表示不容忍任何检查点失败
        env.getCheckpointConfig().setTolerableCheckpointFailureNumber(10);
        //设置是否清理检查点,表示 Cancel 时是否需要保留当前的 Checkpoint,默认 Checkpoint会在作业被Cancel时被删除
        //ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION:true,当作业被取消时,删除外部的checkpoint(默认值)
        //ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:false,当作业被取消时,保留外部的checkpoint

        env.getCheckpointConfig().enableExternalizedCheckpoints(
                CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

        //===================类型3:直接使用默认即可===============================
        //设置checkpoint的执行模式为EXACTLY_ONCE(默认)
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        //设置checkpoint的超时时间,如果 Checkpoint在 60s内尚未完成说明该次Checkpoint失败,则丢弃。
        //默认10分钟
        env.getCheckpointConfig().setCheckpointTimeout(60000);
        //设置同一时间有多少个checkpoint可以同时执行
        //默认为1
        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);

        //TODO 1.source
        DataStream<String> lines = env.socketTextStream("node1", 9999);

        //TODO 2.transformation
        //注意:下面的操作将上面的2步合成了1步,直接切割单词并记为1返回
        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = lines.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                String[] arr = value.split(" ");
                for (String word : arr) {
                    out.collect(Tuple2.of(word, 1));
                }
            }
        });

        SingleOutputStreamOperator<String> result = wordAndOne.keyBy(t -> t.f0).sum(1)
                .map(new MapFunction<Tuple2<String, Integer>, String>() {
                    @Override
                    public String map(Tuple2<String, Integer> value) throws Exception {
                        return value.f0 + ":" + value.f1;
                    }
                });

        //TODO 3.sink
        result.print();

        //使用StreamingFileSink将数据sink到HDFS
        OutputFileConfig config = OutputFileConfig
                .builder()
                //设置文件前缀
                .withPartPrefix("prefix")
                //设置文件后缀
                .withPartSuffix(".txt")
                .build();

        StreamingFileSink<String> streamingFileSink = StreamingFileSink.
                forRowFormat(new Path("hdfs://node1:8020/FlinkStreamFileSink/parquet"), new SimpleStringEncoder<String>("UTF-8"))
                .withRollingPolicy(
                        DefaultRollingPolicy.builder()
                                //每隔15分钟生成一个新文件
                                .withRolloverInterval(TimeUnit.MINUTES.toMillis(15))
                                //每隔5分钟没有新数据到来,也把之前的生成一个新文件
                                .withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
                                .withMaxPartSize(1024 * 1024 * 1024)
                                .build())
                .withOutputFileConfig(config)
                .build();

        result.addSink(streamingFileSink);

        //TODO 4.execute
        env.execute();
    }

}

24.Flink-高级特性-新特性-FlinkSQL整合Hive

24.1.介绍

23.Flink-高级特性-新特性-Streaming Flie Sink\介绍\代码演示\Flink-高级特性-新特性-FlinkSQL整合Hive\添加依赖和jar包和配置_第2张图片

24.2.版本

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/hive/
23.Flink-高级特性-新特性-Streaming Flie Sink\介绍\代码演示\Flink-高级特性-新特性-FlinkSQL整合Hive\添加依赖和jar包和配置_第3张图片

24.3.添加依赖和jar包和配置

<dependency>
    <groupId>org.apache.flinkgroupId>
    <artifactId>flink-connector-hive_2.12artifactId>
    <version>${flink.version}version>
dependency>
<dependency>
    <groupId>org.apache.hivegroupId>
    <artifactId>hive-metastoreartifactId>
    <version>2.1.0version>
    <exclusions>
        <exclusion>
            <artifactId>hadoop-hdfsartifactId>
            <groupId>org.apache.hadoopgroupId>
        exclusion>
    exclusions>
dependency>
<dependency>
    <groupId>org.apache.hivegroupId>
    <artifactId>hive-execartifactId>
    <version>2.1.0version>
dependency>

上传资料hive中的jar包到flink/lib中
23.Flink-高级特性-新特性-Streaming Flie Sink\介绍\代码演示\Flink-高级特性-新特性-FlinkSQL整合Hive\添加依赖和jar包和配置_第4张图片
23.Flink-高级特性-新特性-Streaming Flie Sink\介绍\代码演示\Flink-高级特性-新特性-FlinkSQL整合Hive\添加依赖和jar包和配置_第5张图片

24.4.FlinkSQL整合Hive-CLI命令行整合

1.修改hive-site.xml

<property>
<name>hive.metastore.urisname>
    <value>thrift://node3:9083value>
property>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://node3:3306/hive?createDatabaseIfNotExist=true&amp;useSSL=false</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
    <property>
        <name>hive.metastore.schema.verification</name>
        <value>false</value>
    </property>
    <property>
        <name>datanucleus.schema.autoCreateAll</name>
        <value>true</value>
    </property>
    <property>
        <name>hive.server2.thrift.bind.host</name>
        <value>node3</value>
    </property>
    <property>
        <name>hive.metastore.uris</name>
        <value>thrift://node3:9083</value>
    </property>
</configuration>

2.启动元数据服务

nohup /export/server/hive/bin/hive --service metastore &

3.修改flink/conf/sql-client-defaults.yaml

catalogs:
   - name: myhive
     type: hive
     hive-conf-dir: /export/server/hive/conf
     default-database: default

4.分发
5.启动flink集群

/export/server/flink/bin/start-cluster.sh

6.启动flink-sql客户端-hive在哪就在哪启动
/export/server/flink/bin/sql-client.sh embedded

7.执行sql:

show catalogs;
use catalog myhive;
show tables;
select * from person;

24.5.FlinkSQL整合Hive-代码整合

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/hive/

import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.catalog.hive.HiveCatalog;

/**
 * @author tuzuoquan
 * @date 2022/6/21 23:15
 */
public class HiveDemo {

    public static void main(String[] args) {
        //TODO 0.env
        EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().build();
        TableEnvironment tableEnv = TableEnvironment.create(settings);

        //TODO 指定hive的配置
        String name            = "myhive";
        String defaultDatabase = "default";
        String hiveConfDir = "./conf";

        //TODO 根据配置创建hiveCatalog
        HiveCatalog hive = new HiveCatalog(name, defaultDatabase, hiveConfDir);
        //注册catalog
        tableEnv.registerCatalog("myhive", hive);
        //使用注册的catalog
        tableEnv.useCatalog("myhive");

        //向Hive表中写入数据
        String insertSQL = "insert into person select * from person";
        TableResult result = tableEnv.executeSql(insertSQL);

        System.out.println(result.getJobClient().get().getJobStatus());
    }

}

你可能感兴趣的:(#,黑马贺岁Flink学习笔记,flink,hive,jar)