引言:归并排序跟快速排序一样,都运用到了分治的算法,但是归并排序是一种稳定的算法,同时也具备高效,其时间复杂度为O(N*logN)
算法图解:
然后开始归并:
就是这个思想,拆成最小子问题后再进行归并(两个有序数组的排序问题)
下面是代码:
void merge_sort(int* arry, int size) {//保证接口一致性,再调子函数
assert(arry);
int* tmp = (int*)malloc(sizeof(int) * size);
_merge(arry, 0, size - 1,tmp);
//_merge2(arry, 0, size - 1, tmp);
free(tmp);
}
void _merge(int* arry, int left, int right, int* tmp) {
if (right - left <= 0)return;
int mid = left + (right - left >> 1);//找到中间值
//递归,拆分子问题
_merge(arry, left, mid, tmp);
_merge(arry, mid + 1, right, tmp);
merge_arry(arry, left, mid, mid + 1, right, tmp);
}
void merge_arry(int* arry, int begin1, int end1, int begin2, int end2, int* tmp) {
int index = begin1;
int left = begin1;
int right = end2;
while (begin1 <= end1 && begin2 <= end2) {
if (arry[begin1] < arry[begin2]) {
tmp[index++] = arry[begin1++];
}
else {
tmp[index++] = arry[begin2++];
}
}
if (begin1 <= end1) {
for (int i = begin1; i <= end1; i++) {
tmp[index++] = arry[i];
}
}
else {
for (int i = begin2; i <= end2; i++) {
tmp[index++] = arry[i];
}
}
//再拷贝回原数组
for (int i = left; i <= right; i++) {
arry[i] = tmp[i];
}
}
上面是它的递归实现,那么思考如何使用非递归实现呢?
下面是代码:
void _merge2(int* arry, int left, int right, int* tmp) {
int grap = 1;
while (grap<=right+1) {
for (int i = left; i <= right; i += 2 * grap) {
int begin1 = i, end1 = i + grap - 1;
int begin2 = i + grap, end2 = i + 2 * grap - 1;
if (end1 > right)end1 = right;
if (end2 > right)end2 = right;
merge_arry(arry, begin1, end1, begin2, end2, tmp);
}
grap = grap * 2;
}
}
void merge_sort(int* arry, int size) {
assert(arry);
int* tmp = (int*)malloc(sizeof(int) * size);
//_merge(arry, 0, size - 1,tmp);
_merge2(arry, 0, size - 1, tmp);
free(tmp);
}