CF505B Mr. Kitayuta‘s Colorful Graph

Mr. Kitayuta’s Colorful Graph

题面翻译

给出一个 n n n 个点, m m m 条边的无向图,每条边上是有颜色的。有 q q q 组询问

对于第 i i i 组询问,给出点对 u i , v i u_i,v_i ui,vi。求有多少种颜色 c c c 满足:有至少一条 u i u_i ui v i v_i vi 路径,满足该路径上的所有边的颜色都为 c c c

输入格式

第一行两个整数 n , m n,m n,m 分别表示点的个数和边的个数
接下来 m m m 行,每行三个整数 x i , y i , c i x_i,y_i,c_i xi,yi,ci,表示有一条连接点 x i , y i x_i,y_i xi,yi 的边,且该边的颜色为 c i c_i ci

接下来一行一个整数 q q q,表示询问的个数

接下来 q q q 行,每行两个整数 u i , v i u_i,v_i ui,vi,表示一组询问

输出格式

对于每一组询问,在单独的一行输出一个整数,表示满足上述要求的颜色种数

说明与提示

2 ≤ n ≤ 100 2 \le n \le 100 2n100
1 ≤ m , q ≤ 100 1 \le m,q \le 100 1m,q100
1 ≤ x i , y i , u i , v i ≤ n 1\le x_i,y_i,u_i,v_i \le n 1xi,yi,ui,vin
1 ≤ c i ≤ m 1 \le c_i \le m 1cim
感谢 @_Wolverine 提供的翻译

题目描述

Mr. Kitayuta has just bought an undirected graph consisting of $ n $ vertices and $ m $ edges. The vertices of the graph are numbered from 1 to $ n $ . Each edge, namely edge $ i $ , has a color $ c_{i} $ , connecting vertex $ a_{i} $ and $ b_{i} $ .

Mr. Kitayuta wants you to process the following $ q $ queries.

In the $ i $ -th query, he gives you two integers — $ u_{i} $ and $ v_{i} $ .

Find the number of the colors that satisfy the following condition: the edges of that color connect vertex $ u_{i} $ and vertex $ v_{i} $ directly or indirectly.

输入格式

The first line of the input contains space-separated two integers — $ n $ and $ m $ ( $ 2<=n<=100,1<=m<=100 $ ), denoting the number of the vertices and the number of the edges, respectively.

The next $ m $ lines contain space-separated three integers — $ a_{i} $ , $ b_{i} $ ( $ 1<=a_{i}

The next line contains a integer — $ q $ ( $ 1<=q<=100 $ ), denoting the number of the queries.

Then follows $ q $ lines, containing space-separated two integers — $ u_{i} $ and $ v_{i} $ ( $ 1<=u_{i},v_{i}<=n $ ). It is guaranteed that $ u_{i}≠v_{i} $ .

输出格式

For each query, print the answer in a separate line.

样例 #1

样例输入 #1

4 5
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4

样例输出 #1

2
1
0

样例 #2

样例输入 #2

5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4

样例输出 #2

1
1
1
1
2

提示

Let’s consider the first sample.

CF505B Mr. Kitayuta‘s Colorful Graph_第1张图片 The figure above shows the first sample. - Vertex $ 1 $ and vertex $ 2 $ are connected by color $ 1 $ and $ 2 $ .

  • Vertex $ 3 $ and vertex $ 4 $ are connected by color $ 3 $ .
  • Vertex $ 1 $ and vertex $ 4 $ are not connected by any single color.

思路

(1)并查集
一个二维并查集,一个记录颜色,一个记录点。
(2)Floyed
普通Floyed加一维颜色。数据只有100四维循环不会T。

AC code

(1)并查集

#include

using namespace std;

int fa[1000][1000];
int n, m, t;

int find(int x, int i) 
{
	if (fa[x][i] == x) return x;
	return fa[x][i] = find(fa[x][i], i); 
}

int main()
{
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			fa[i][j] = i; 
	for (int i = 1; i <= m; ++i)
	{
		int u, v, z;
		cin >> u >> v >> z;
		fa[find(u, z)][z] = find(v,z); 
	}
	
	cin >> t;
	while (t--)
	{
		int u, v, ans = 0;
		cin >> u >> v;
		for(int i = 1; i <= m;i++)
			if (find(u,i) == find(v,i)) ans++; 
		cout << ans << endl;
	}
	return 0;
}

(2)Floyed

#include

using namespace std;

int a[101][101][101];

int main()
{
	int n, m;
	cin >> n >> m;
	for(int i = 1; i <= m; i++)
	{
		int u, v, q;
		cin >> u >> v >> q;
		a[u][v][q] = 1;
		a[v][u][q] = 1;
	}
	for (int k = 1; k <= n; k++)
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= n; j++)
				for (int c = 1; c <= m; c++)
					if (a[i][k][c] == 1 && a[k][j][c] == 1)
						a[i][j][c] = 1;
	int q;
	cin >> q;
	for (int i = 1; i <= q; i++)
	{
		int u, v;
		cin >> u >> v;
		int sum = 0;
		for(int j = 1; j <= m; j++)
			if(a[u][v][j] == 1)
				sum++;
		cout << sum << endl;
	}
	return 0;
}

你可能感兴趣的:(Codeforces,并查集,题解,算法,并查集,codeforces,Floyed)