- 2020年 12月3日 渥太华 阴
一生守望一人
今天结课了。全面备战,准备期末考试了。最近看到纽约州立阿尔伯尼法学院和西奈山医学院有一个联合生命科学的硕士学位,有点心动,打算考完试以后找教授和相关负责人问一下。新闻方面,中国第一次实现了外太空运载器发射,嫦娥今天正式启程返家了。这也预示着我们面对载人登月又踏出了自己坚实的一步。同时,我们继美国之后在同一年制造出了量子计算机“九章”。“九章”量子计算机可以以200秒的速度计算出当前最强大超级计算机
- 《量子思维》:寻找问题的第三种解法
空气凤梨
《量子思维》:寻找问题的第三种解法文:空气凤梨人类刚刚迈入“量子时代”的门槛,量子科技呈现出无限前景。日本著名实业家及IT工程师、原谷歌副总裁兼日本公司总裁村上宪郎结合自身经历,基于对当今前沿科技的准确把握,系统介绍了一种全新的思维方法——量子思维,可能将对人类以哲学、心理学等为基础的思维领域产生重大影响。通过《量子思维》这本书,人们可以认识到量子力学和量子计算机相关知识的重要性,并充实自己的知识
- 入门篇,带你了解CPU, GPU, TPU, NPU, DPU
今夕是何年,
视觉算法部署深度学习算法人工智能
目录CPU(中央处理器)GPU(图形处理器)TPU(张量处理单元)NPU(神经网络处理器)DPU(数据处理器)CPU(中央处理器)专业介绍:CPU是计算机系统的核心,负责执行操作系统和应用程序的指令。它由多个核心组成,每个核心可以独立执行任务。CPU的设计重点是处理复杂的逻辑运算和顺序任务,如分支预测、指令调度等。现代CPU通常包含多个层级的缓存(如L1、L2和L3缓存),以减少访问主存储器的延迟
- 一维数组 list 呢 ,怎么转换成 (批次 句子长度 特征值 )三维向量 python pytorch lstm 编程 人工智能
zhangfeng1133
pythonpytorch人工智能数据挖掘
一、介绍对于一维数组,如果你想将其转换成适合深度学习模型(如LSTM)输入的格式,你需要考虑将其扩展为三维张量。这通常涉及到批次大小(batchsize)、序列长度(sequencelength)和特征数量(numberoffeatures)的维度。以下是如何将一维数组转换为这种格式的步骤:###1.确定维度-**批次大小(BatchSize)**:这是你一次处理的样本数量。-**序列长度(Seq
- torch.stack()方法在数据集构造中的应用
大多_C
pytorch人工智能python
torch.stack()是PyTorch中用于将多个张量沿着新维度进行堆叠的操作。在你的代码中,e1_encodings和e2_encodings是从每个句子中提取的和的向量,形状为[hidden_size]。当我们对它们使用torch.stack()时,多个向量会堆叠成一个新的二维张量,形状为[num_sentences,hidden_size],其中num_sentences是句子的数量。如
- pytorh基础知识和函数的学习:torchvision.transforms()
深蓝海拓
机器视觉和人工智能学习学习pytorch
transforms是PyTorch的torchvision库中用于图像处理的一个模块。它提供了一组工具,用于在图像数据集上进行常见的预处理和数据增强操作,以便更好地训练深度学习模型。以下是一些常用的torchvision.transforms转换:基础图像转换:transforms.ToTensor():将PIL图像或NumPy数组转换为PyTorch的张量,并将像素值范围从[0,255]缩放到
- 【pytorch】register_buffer的使用
Aha_aho
pytorch人工智能python
这篇文章讲解很清晰,以下内容仅做补充,探讨哪些对象需要手动注册,哪些会自动注册。在PyTorch中,哪些对象会自动注册为模型的一部分取决于它们的类型以及你如何定义它们。下面列出不需要手动注册、会自动注册的几种情况:1.nn.Parameter自动注册:任何你在nn.Module中定义为nn.Parameter的张量都会自动注册为模型的参数。它们会被视为模型的可训练参数,并且会被包含在模型的stat
- 科技创新 国之基石
Z秋语
华为5G遍布全国;高速磁悬浮试验样车成功北走;卫星导航系统全面升级;量子计算机研究成功;岁月一代一代更迭,中国人走过泥泞坎坷的道路,挨过无边又寒冷的黑夜,终于,在新世纪中国奏响了高速发展的乐曲。许多成就令人瞩目,许多科技创新令世界羡慕,中国迈向高速发展的道路。“科技创新是亘古不变的真理科技兴国是百年的箴言”中国坚持着这一理念屹立于世界之林。前有隐性埋名的邓稼先,下农探测的袁隆平后有飞天造梦人员,海
- 【AI】张量的秩(阶)与矩阵的秩和阶的区别
栏杆拍遍看吴钩
MindSpore人工智能矩阵线性代数mindspore
在阅读MindSpore文档时,笔者对这段话不太理解,遂求助ChatGPT.矩阵的秩是矩阵中线性无关的行或者列,矩阵的阶就是矩阵中的行数和列数。而张量的秩和阶是一个概念,指的是张量的维度(是1维的,二维的还是高维的)
- 深度学习框架 人工智能操作系统 训练&前向推理 PyTorch Tensorflow MindSpore caffe 张量加速引擎TBE 深度学习编译器 多面体 polyhedral AI集群框架
EwenWanW
深度学习人工智能pytorch深度学习编译器
深度学习框架人工智能操作系统训练&前向推理深度学习框架发展到今天,目前在架构上大体已经基本上成熟并且逐渐趋同。无论是国外的Tensorflow、PyTorch,亦或是国内最近开源的MegEngine、MindSpore,目前基本上都是支持EagerMode和GraphMode两种模式。AI嵌入式框架OneFlow&清华计图Jittor&华为深度学习框架MindSpore&旷视深度学习框架MegEn
- CVPR 2021 | 即插即用! CA:新注意力机制,助力分类/检测/分割涨点!
Akita·wang
文献解析paperpython机器学习人工智能深度学习计算机视觉
摘要最近关于移动网络设计的研究已经证明了通道注意(例如,挤压和激发注意)对于提升模型性能的显著效果,但是它们通常忽略位置信息,而位置信息对于生成空间选择性注意图是重要的。本文提出了一种新的移动网络注意机制,将位置信息嵌入到信道注意中,我们称之为“协同注意”。与通过2D全局汇集将特征张量转换为单个特征向量的通道注意力不同,坐标注意力将通道注意力分解为两个1D特征编码过程,这两个过程分别沿两个空间方向
- pytorch torch.matmul函数介绍
qq_27390023
pytorch人工智能python
torch.matmul是PyTorch中用于进行矩阵乘法的函数。它可以执行两维矩阵、向量和更高维张量之间的乘法运算,支持的运算取决于输入张量的维度。1.函数签名torch.matmul(input,other,out=None)input:左乘的张量。other:右乘的张量。out:可选,用于存储输出结果的张量。2.不同维度的乘法规则torch.matmul根据输入张量的维度执行不同类型的乘法:
- PyTorch学习(13):PyTorch的张量相乘(torch.matmul)
赛先生.AI
PyTorchpytorch
PyTorch学习(1):torch.meshgrid的使用-CSDN博客PyTorch学习(2):torch.device-CSDN博客PyTorch学习(9):torch.topk-CSDN博客PyTorch学习(10):torch.where-CSDN博客PyTorch学习(11):PyTorch的形状变换(view,reshape)与维度变换(transpose,permute)-CSDN
- pytorch torch.norm函数介绍
qq_27390023
pytorch人工智能python
torch.norm函数用于计算张量的范数(norm),可以理解为张量的“长度”或“大小”。根据范数的不同类型,它可以衡量不同的张量性质。该函数可以计算向量和矩阵的多种范数,如L1范数、L2范数、无穷范数等。1.函数签名torch.norm(input,p='fro',dim=None,keepdim=False,dtype=None,out=None)input:需要计算范数的输入张量。p:范数
- TypeError: list indices must be integers or slices, not list
m0_68138877
pytorchlist
TypeError:listindicesmustbeintegersorslices,notlist原因:传入参数搞错了计划通过一个下标list,通过rand.shuffle实现训练数据的随机化,结果因为传入的数据是没有tokenized的(就是一堆原始的字符串,并且是用list保存的,tokenize之后应该是一个torch.tensor类型的张量)修复方法:对应原因,传入正确的参数即可总结:
- 【PyTorch】PyTorch中的方法torch.randperm()介绍
读思辨
PyTorchpytorch人工智能python
在PyTorch中,torch.randperm(n)函数用于生成一个从0到n-1的随机排列的整数序列。这个函数是非常有用的,尤其是在需要随机打乱数据或索引时,比如在训练机器学习模型时打乱数据顺序,以确保模型训练的泛化能力。参数n(int):输出张量的长度,即最大的数字为n-1。返回值返回一个一维张量,包含了从0到n-1的随机排列。使用示例下面是一个基本的使用示例,展示了如何使用torch.ran
- pytorch torch.einsum函数介绍
qq_27390023
pytorch人工智能python
torch.einsum是PyTorch中一个强大且灵活的张量运算函数,基于爱因斯坦求和约定进行操作。它允许用户通过简单的字符串表达式来定义复杂的张量运算,代替显式的循环或多个矩阵乘法操作。函数签名torch.einsum(equation,*operands)→Tensor参数equation:一个字符串,描述了张量间的操作关系。它使用爱因斯坦求和约定,用逗号分隔不同张量的索引,使用箭头(->)
- pytorch tensor.expand函数介绍
qq_27390023
pytorch人工智能python
在PyTorch中,tensor.expand()是一个用于扩展张量维度的函数。一、函数作用它允许你在不复制数据的情况下,将张量的形状扩展到指定的维度大小。这对于需要在特定维度上重复数据的操作非常有用,例如在进行广播操作时调整张量的形状。二、函数语法tensor.expand(*sizes)其中,*sizes是一个可变参数,表示要扩展到的目标形状。可以传入整数或整数序列来指定每个维度的大小。三、使
- 深度学习之深度学习框架——Tensorflow
只求毕业
目录Tensorflow框架Tensorflow的特点Tensorflow基础Tensorflow的编程习惯Tensorflow的设计基本思想Tensorflow进阶图创一个新的图——tf.Graph()op有哪些会话会话的run()方法张量张量的阶张量的数据类型张量的属性张量的静态形状和动态形状张量操作——生成张量张量操作——张量变换Tensorflow框架Tensorflow的特点Tensor
- pytorch torch.squeeze函数介绍
qq_27390023
pytorch深度学习人工智能
在PyTorch中,torch.squeeze(input,dim=None)函数用于去除张量中尺寸为1的维度。一、函数参数input:输入张量。dim:若指定了该参数,只有当给定维度的尺寸为1时才会去除该维度。如果该维度的尺寸不为1,则张量不会发生变化。如果不指定该参数,则去除所有尺寸为1的维度。二、使用示例importtorch#创建一个三维张量,其中有一个维度的尺寸为1tensor=torc
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 学习日志31
Simon#0209
学习量子计算
本源量子计算平台体验frompyqpandaimport*importnumpyasnp#通过QCloud()创建量子云虚拟机QCM=QCloud()#通过传入当前用户的token来初始化QCM.init_qvm("304102010030130607299538cd7ed/33683")qlist=QCM.qAlloc_many(6)clist=QCM.cAlloc_many(6)measure
- pytorch view 函数介绍
qq_27390023
pytorch人工智能python
view是PyTorch中用于改变张量形状(tensorshape)的函数。与其他形状转换操作不同的是,view并不改变张量的数据,而是返回一个新的张量,该张量与原始数据共享内存。1.基本用法view的作用是将一个张量重新排列成新的形状。它的基本语法是:tensor.view(shape)shape:新张量的形状,可以是整数或一个整数元组。shape中的某一个维度可以是-1,表示该维度的大小由张量
- pytorch中的nn.MSELoss()均方误差损失函数
AndrewPerfect
深度学习python基础pytorch基础pytorch人工智能python
一、nn.MSELoss()是PyTorch中的一个损失函数,用于计算均方误差损失。均方误差损失函数通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。具体来说,nn.MSELoss()函数的输入是两个张量,即模型的真实值和预测值,输出是一个标量,表示两个张量之间的均方误差。在训练神经网络时,通常将该损失函数作为优化器的目标函数,通过反向传播算法来更新模型的参数,以最小化均方
- PyTorch库学习之torch.nn.functional.interpolate(函数)
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.nn.functional.interpolate(函数)一、简介torch.nn.functional.interpolate是PyTorch中用于对张量进行上采样或下采样的函数。它支持多种插值方法,例如双线性插值、最近邻插值等,广泛用于图像处理、特征图缩放等场景。二、语法和参数语法torch.nn.functional.interpolate(input,si
- PyTorch库学习之torch.repeat_interleave函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.repeat_interleave函数一、简介torch.repeat_interleave是PyTorch库中的一个函数,它用于重复张量中的元素。这个函数可以沿着指定的维度重复张量中的每个元素,返回一个新的张量。当不指定维度时,会将输入张量展平,并重复每个元素。这个函数在处理序列数据或生成数据增强样本时非常有用。二、语法和参数语法:torch.repeat_in
- TensorFlow 的基本概念和使用场景。
WangLinXX
学习tensorflow人工智能python
TensorFlow是由Google开发的开源机器学习框架,用于构建和训练各种机器学习模型。它基于数据流图的概念,其中节点表示数学操作,边表示多维数组(张量)的流动。TensorFlow的基本概念包括:1.张量(Tensors):在TensorFlow中,数据以张量的形式表示。它们是多维数组,可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。2.数据流图(DataFlowGraph)
- Bert中文预训练模型(Bert-base-chinese)
好好学习Py
自然语言处理bert人工智能深度学习pytorchpython自然语言处理
介绍Bert-base-chinese模型是一个在简体和繁体中文文本上训练得到的预训练模型,具有以下特点:12个隐层输出768维张量12个自注意力头110M参数量该模型的主要作用是获取每个汉字的向量表示,后续通过微调可应用于各种简体和繁体中文任务。使用importtorchfromtransformersimportBertTokenizer,BertModel#第一步:离线下载#fromtran
- 昇思25天学习打卡
十分钟ll
昇思25天学习打卡pythonpytorch视觉检测图像处理
@[TOC]《昇思25天学习打卡营第02天|lulul》张量Tensor张量tensor是在机器学习和深度学习中广泛应用的数据概念,张量是多维数组的泛化,能够表示标量(0维张量)、向量(1维张量)、矩阵(2维张量)及更高维的数组。张量基本用法(mindspore)data=[1,0,1,0]x_data=Tensor(data)print(x_data,x_data.shape,x_data.dt
- 动手学深度学习(pytorch)学习记录21-读写文件(模型与参数)[学习记录]
walfar
pytorch深度学习pytorch学习
目录加载和保存张量加载和保存模型参数保存模型的好处众多,涵盖了从开发到部署的整个机器学习生命周期。节省资源:训练模型可能需要大量的时间和计算资源。保存模型可以避免重复训练,从而节省时间和计算资源。快速部署:一旦模型被训练并保存,它可以迅速部署到生产环境中,加速产品上市时间。版本控制:保存不同版本的模型有助于跟踪模型的迭代过程,便于比较和回滚到之前的版本。离线使用:保存的模型可以在没有网络连接的情况
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出