题目链接
**解题思路:**动态规划五部曲分析如下:
dp[i][j]
表示以下标i-1
为结尾的字符串s,和以下标j-1
为结尾的字符串t,相同子序列的长度为dp[i][j]
。
注意这里是判断s
是否为t
的子序列。即t的长度是大于等于s的。
有同学问了,为啥要表示下标i-1
为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?
在确定递推公式的时候,首先要考虑如下两种操作,整理如下:
if (s[i - 1] == t[j - 1])
,那么dp[i][j] = dp[i - 1][j - 1] + 1
;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]
的基础上加1(如果不理解,在回看一下dp[i][j]
的定义)
if (s[i - 1] != t[j - 1])
,此时相当于t要删除元素,t如果把当前元素t[j - 1]
删除,那么dp[i][j]
的数值就是 看s[i - 1]
与 t[j - 2]
的比较结果了,即:dp[i][j] = dp[i][j - 1]
;
从递推公式可以看出dp[i][j]
都是依赖于dp[i - 1][j - 1]
和 dp[i][j - 1]
,所以dp[0][0]
和dp[i][0]
是一定要初始化的。
这里大家已经可以发现,在定义dp[i][j]
含义的时候为什么要表示以下标i-1
为结尾的字符串s
,和以下标j-1
为结尾的字符串t,相同子序列的长度为dp[i][j]
。
如果要是定义的dp[i][j]
是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。
dp[i][0]
表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]
同理。
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
同理从递推公式可以看出dp[i][j]
都是依赖于dp[i - 1][j - 1]
和 dp[i][j - 1]
,那么遍历顺序也应该是从上到下,从左到右
如图所示:
以示例一为例,输入:s = “abc”, t = “ahbgdc”,dp状态转移图如下:
dp[i][j]
表示以下标i-1为结尾的字符串s和以下标j-1
为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()]
与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。
图中dp[s.size()][t.size()] = 3
, 而s.size() 也为3。所以s是t 的子序列,返回true。
动规五部曲分析完毕,C++代码如下:
class Solution {
public:
bool isSubsequence(string s, string t) {
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];
}
}
if (dp[s.size()][t.size()] == s.size()) return true;
return false;
}
};
题目链接
解题思路:
动规五部曲分析如下:
dp[i][j]
:以i-1
为结尾的s子序列中出现以j-1
为结尾的t的个数为dp[i][j]
。
这一类问题,基本是要分析两种情况
当s[i - 1]
与 t[j - 1]
相等时,dp[i][j]
可以有两部分组成。
一部分是用s[i - 1]
来匹配,那么个数为dp[i - 1][j - 1]
。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]
。
一部分是不用s[i - 1]
来匹配,个数为dp[i - 1][j]
。
例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
当然也可以用s[3]
来匹配,即:s[0]s[1]s[3]
组成的bag。
所以当s[i - 1]
与 t[j - 1]
相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1]
与 t[j - 1]
不相等时,dp[i][j]
只有一部分组成,不用s[i - 1]
来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j];
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
和 dp[i][j] = dp[i - 1][j];
中可以看出dp[i][j]
是从上方和左上方推导而来,如图:,那么 dp[i][0]
和dp[0][j]
是一定要初始化的。
每次当初始化的时候,都要回顾一下dp[i][j]
的定义,不要凭感觉初始化。
dp[i][0]
表示什么呢?
dp[i][0]
表示:以i-1
为结尾的s可以随便删除元素,出现空字符串的个数。
那么dp[i][0]
一定都是1,因为也就是把以i-1
为结尾的s,删除所有元素,出现空字符串的个数就是1。
再来看dp[0][j]
,dp[0][j]
:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
那么dp[0][j]
一定都是0,s如论如何也变成不了t。
最后就要看一个特殊位置了,即:dp[0][0]
应该是多少。
dp[0][0]
应该是1,空字符串s,可以删除0个元素,变成空字符串t。
初始化分析完毕,代码如下:
vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
和 dp[i][j] = dp[i - 1][j]
; 中可以看出dp[i][j]
都是根据左上方和正上方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
代码如下:
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
以s:“baegg”,t:"bag"为例,推导dp数组状态如下:
动规五部曲分析完毕,代码如下:
class Solution {
public:
int numDistinct(string s, string t) {
vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1));
for (int i = 0; i < s.size(); i++) dp[i][0] = 1;
for (int j = 1; j < t.size(); j++) dp[0][j] = 0;
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[s.size()][t.size()];
}
};