操作系统内存管理相关

1. 虚拟内存

1.1 什么是虚拟内存

        虚拟内存是计算机系统内存管理的一种技术,我们可以手动设置自己电脑的虚拟内存。不要单纯认为虚拟内存只是“使用硬盘空间来扩展内存“的技术。虚拟内存的重要意义是它定义了一个连续的虚拟地址空间,并且 把内存扩展到硬盘空间。        

1.2 为什么需要虚拟内存?

        我们了解单片机是没有操作系统的,所以每次写完代码,都需要借助工具把程序烧录进去,这样程序才能跑起来。另外,单片机的 CPU 是直接操作内存的「物理地址」

        在这种情况下,要想在内存中同时运行两个程序是不可能的。如果第一个程序在 3000 的位置写入一个新的值,将会擦掉第二个程序存放在相同位置上的所有内容,所以同时运行两个程序是根本行不通的,这两个程序会立刻崩溃。(也就是每次CPU都直接操作内存导致不能多进程

那么操作系统应该如何避免这种情况?

(这里关键的问题是这两个程序都引用了绝对物理地址,而这正是我们最需要避免的)

        因此我们可以把进程所使用的地址「隔离」开来,即让操作系统为每个进程分配独立的一套「虚拟地址」,人人都有,互不干涉。但是有个前提每个进程都不能访问物理地址,至于虚拟地址最终怎么落到物理内存里,对进程来说是透明的。

操作系统内存管理相关_第1张图片

操作系统会提供一种机制,将不同进程的虚拟地址和不同内存的物理地址映射起来。

如果程序要访问虚拟地址的时候,由操作系统转换成不同的物理地址,这样不同的进程运行的时候,写入的是不同的物理地址,这样就不会冲突了。

于是,这里就引出了两种地址的概念:

  • 我们程序所使用的内存地址叫做虚拟内存地址Virtual Memory Address
  • 实际存在硬件里面的空间地址叫物理内存地址Physical Memory Address)。

操作系统引入了虚拟内存,进程持有的虚拟地址会通过 CPU 芯片中的内存管理单元(MMU)的映射关系,来转换变成物理地址,然后再通过物理地址访问内存,如下图所示:

操作系统内存管理相关_第2张图片

1.3 如何管理虚拟地址与物理地址之间的关系?

内存分页

        分页是把整个虚拟和物理内存空间切成一段段固定尺寸的大小。这样一个连续并且尺寸固定的内存空间,我们叫Page)。在 Linux 下,每一页的大小为 4KB

虚拟地址与物理地址之间通过页表来映射,在分页机制下,虚拟地址分为两部分页号页内偏移。页号作为页表的索引,页表包含物理页每页所在物理内存的基地址,这个基地址与页内偏移的组合就形成了物理内存地址,见下图:

操作系统内存管理相关_第3张图片

因此内存转化的步骤为:

  1. CPU将虚拟内存地址切分为页号和偏移量
  2. 根据页号在页表中查询对应的物理页号
  3. 页号加上前面的偏移量,就得到了物理内存地址

但是如果这样给每一个程序分配一个页表去管理虚拟内存的话会出现下面的问题:

        在32位系统上,虚拟内存大小约为4G(2^32),一个页的大小为4K(2^12),那么我们映射4G虚拟内存空间需要100 多万(2^20)个页,一个「页表项」(一个页的内容)需要4个字节,也就是需要4M的内存空间存储这个页表。

        一个进程映射整个虚拟内存空间需要4M,那么100个进程就需要400M存储页表。这是非常大的内存了,更别说 64 位的环境了。

        为了解决空间大小的问题,提出了多级页表的方法

多级页表

        通过上面的例子我们得知32位系统下,要映射整个4G虚拟地址空间的页表大小为4M,且这个页表有100 多万(2^20)「页表项」。

        我们把这个 100 多万个「页表项」的单级页表再分页,将页表(一级页表)分为 1024 个页表(二级页表),每个表(二级页表)中包含 1024 个「页表项」,形成二级分页。如下图所示:

操作系统内存管理相关_第4张图片

        此时你会发现,进行二级分页去映射4G虚拟内存空间,需要 4KB(一级页表)+ 4M(二级页表),这比之前不分多级(只有一级表)花费的4M还要大吗?

        其实:每个进程都有 4GB 的虚拟地址空间,而显然对于大多数程序来说,其使用到的空间远未达到 4GB,因为会存在部分对应的页表项都是空的,根本没有分配,对于已分配的页表项,如果存在最近一定时间未访问的页表,在物理内存紧张的情况下,操作系统会将页面换出到硬盘,也就是说不会占用物理内存。

        如果使用了二级分页,一级页表就可以覆盖整个 4GB 虚拟地址空间,但如果某个一级页表的页表项没有被用到,也就不需要创建这个页表项对应的二级页表了,即可以在需要时才创建二级页表。假设只有 20% 的一级页表项被用到了,那么页表占用的内存空间就只有 4KB(一级页表) + 20% * 4MB(二级页表)= 0.804MB,这对比单级页表的 4MB 是不是一个巨大的节约?

2. malloc原理

2.1 Linux内存分布长什么样?

Linux操作系统中,虚拟地址空间分为内核空间和用户空间

操作系统内存管理相关_第5张图片

接下来看看32位中用户空间的具体分布情况:

操作系统内存管理相关_第6张图片

  • 代码段:包括二进制可执行代码;
  • 数据段:包括已初始化的静态常量和全局变量;
  • BSS 段:包括未初始化的静态变量和全局变量;
  • 堆段:包括动态分配的内存,从低地址开始向上增长;
  • 文件映射段:包括动态库、共享内存等,从低地址开始向上增长
  • 栈段:包括局部变量和函数调用的上下文等。栈的大小是固定的,一般是 8 MB。当然系统也提供了参数,以便我们自定义大小;

在这 6 个内存段中,堆和文件映射段的内存是动态分配的。比如说,使用 C 标准库的 malloc() 或者 mmap() ,就可以分别在堆和文件映射段动态分配内存。

2.1 malloc 是如何分配内存的?

malloc 申请内存的时候,会有两种方式向操作系统申请堆内存。

  • 方式一:如果用户分配的内存小于 128 KB,通过 brk() 系统调用从分配内存
  • 方式二:如果用户分配的内存大于 128 KB,通过 mmap() 系统调用在文件映射区分配内存

原理:

方式一:通过 brk() 函数将「堆顶」指针向高地址移动,获得新的内存空间。

操作系统内存管理相关_第7张图片

方式二:通过 mmap() 系统调用中「私有匿名映射」的方式,在文件映射区分配一块内存,也就是从文件映射区“偷”了一块内存。

操作系统内存管理相关_第8张图片

2.2 malloc 分配的是物理内存吗?

不是的,malloc() 分配的是虚拟内存

如果分配后的虚拟内存没有被访问的话,虚拟内存是不会映射到物理内存的,这样就不会占用物理内存了。

只有在访问已分配的虚拟地址空间的时候,操作系统通过查找页表,发现虚拟内存对应的页没有在物理内存中,就会触发缺页中断,然后操作系统会建立虚拟内存和物理内存之间的映射关系。

2.3 malloc(1) 会分配多大的内存?

malloc() 在分配内存的时候,并不是老老实实按用户预期申请的字节数来分配内存空间大小,而是会预分配更大的空间作为内存池

我们以以下代码为例,看看malloc(1)究竟分配了多大内存:

#include 
#include 
#include 

int main()
{
  printf("使用cat /proc/%d/maps查看内存分配\n",getpid());
  
  //申请1字节的内存
  void *addr = malloc(1);
  printf("此1字节的内存起始地址:%x\n", addr);
  printf("使用cat /proc/%d/maps查看内存分配\n",getpid());
 
  //将程序阻塞,当输入任意字符时才往下执行
  getchar();

  //释放内存
  free(addr);
  printf("释放内存\n");

  //阻塞去查看内存是否归还给系统
  getchar();
  return 0;
}

 执行代码:

操作系统内存管理相关_第9张图片

我们可以通过 /proc//maps 文件查看进程的内存分布情况。我在 maps 文件通过此 1 字节的内存起始地址过滤出了内存地址的范围。

这个例子分配的内存小于 128 KB,所以是通过 brk() 系统调用向堆空间申请的内存,因此可以看到最右边有 [heap] 的标识。

可以看到,堆空间的内存地址范围是 561e7890c000-561e7892d000,这个范围大小是 132KB,也就说明了 malloc(1) 实际上预分配 132K 字节的内存

2.4 free 释放内存,会归还给操作系统吗?

1. 我们以上面的程序为例(申请小于128K的空间),我们在free(addr)结束后,再使用cat /proc/%d/maps去查看内存时候还在:

操作系统内存管理相关_第10张图片

释放malloc(1)的内存后在执行一次cat

操作系统内存管理相关_第11张图片

可以看到,通过 free 释放内存后,堆内存还是存在的,并没有归还给操作系统

2. 我们这次申请大于128K的内存来看看:

#include 
#include 
#include 

int main()
{
  printf("使用cat /proc/%d/maps查看内存分配\n",getpid());
  
  //申请1字节的内存
  void *addr = malloc(200*1024);
  printf("此1字节的内存起始地址:%x\n", addr);
  printf("使用cat /proc/%d/maps查看内存分配\n",getpid());
 
  //将程序阻塞,当输入任意字符时才往下执行
  getchar();

  //释放内存
  free(addr);
  printf("释放200K内存\n");
  
  getchar();
  return 0;
}

操作系统内存管理相关_第12张图片

查看进程的内存的分布情况,可以发现最右边没有 [heap] 标志,说明是通过 mmap 以匿名映射的方式从文件映射区分配的匿名内存。

然后我们释放掉这个内存看看:

操作系统内存管理相关_第13张图片

再次查看该 200KB 内存的起始地址

可以发现已经不存在了,说明归还给了操作系统

3. 内存满了会发生什么?

应用程序通过 malloc 函数申请内存的时候,实际上申请的是虚拟内存,此时并不会分配物理内存。

当应用程序读写了这块虚拟内存,CPU 就会去访问这个虚拟内存, 这时会发现这个虚拟内存没有映射到物理内存, CPU 就会产生缺页中断,进程会从用户态切换到内核态,并将缺页中断交给内核的 Page Fault Handler (缺页中断函数)处理。

缺页中断处理函数会看是否有空闲的物理内存,如果有,就直接分配物理内存,并建立虚拟内存与物理内存之间的映射关系。

如果没有空闲的物理内存,那么内核就会开始进行回收内存的工作,回收的方式主要是两种:直接内存回收和后台内存回收。

  • 后台内存回收(kswapd):在物理内存紧张的时候,会唤醒 kswapd 内核线程来回收内存,这个回收内存的过程异步的,不会阻塞进程的执行。
  • 直接内存回收(direct reclaim):如果后台异步回收跟不上进程内存申请的速度,就会开始直接回收,这个回收内存的过程是同步的,会阻塞进程的执行。

如果直接内存回收后,空闲的物理内存仍然无法满足此次物理内存的申请,那么内核就会放最后的大招了 ——触发 OOM (Out of Memory)机制

OOM机制会根据算法选择一个占用物理内存较高的进程,然后将其杀死,以便释放内存资源,如果物理内存依然不足,OOM会继续杀死占用物理内存较高的进程,直到释放足够的内存位置。

申请物理内存的过程如下图:

操作系统内存管理相关_第14张图片

4. 零拷贝

        零拷贝是指在数据传输过程中,尽量减少或避免数据的拷贝操作,从而提高数据传输效率和性能。在零拷贝过程中,数据在用户态和内核态之间进行传递,而不需要经过CPU的拷贝。零拷贝技术可以通过减少上下文切换和数据拷贝次数来降低系统的开销,提高数据传输的效率。

在了解零拷贝技术之前,先来了解以下的几个知识点,才能更深刻的理解为什么需要零拷贝

4.1 DMA技术

        什么是 DMA 技术?简单理解就是,在进行 I/O 设备和内存的数据传输的时候,数据搬运的工作全部交给 DMA 控制器,而 CPU 不再参与任何与数据搬运相关的事情,这样 CPU 就可以去处理别的事务

我们先来看一看没有DMA技术时,I/O的过程:

  • CPU 发出对应的指令给磁盘控制器,然后返回;
  • 磁盘控制器收到指令后,于是就开始准备数据,会把数据放入到磁盘控制器的内部缓冲区中,然后产生一个中断
  • CPU 收到中断信号后,停下手头的工作,接着把磁盘控制器的缓冲区的数据一次一个字节地读进自己的寄存器,然后再把寄存器里的数据写入到内存,而在数据传输的期间 CPU 是无法执行其他任务的。

操作系统内存管理相关_第15张图片

        可以看到,整个数据的传输过程,都要需要 CPU 亲自参与搬运数据的过程,而且这个过程,CPU 是不能做其他事情的。

        简单的搬运几个字符数据那没问题,但是如果我们用千兆网卡或者硬盘传输大量数据的时候,都用 CPU 来搬运的话,肯定忙不过来。于是就有了 DMA 技术,也就是直接内存访问(Direct Memory Access 技术。

那使用 DMA 控制器进行数据传输的过程究竟是什么样的呢?下面我们来具体看看:

操作系统内存管理相关_第16张图片

具体过程:

  • 用户进程调用 read 方法,向操作系统发出 I/O 请求,请求读取数据到自己的内存缓冲区中,进程进入阻塞状态;
  • 操作系统收到请求后,进一步将 I/O 请求发送 DMA,然后让 CPU 执行其他任务;
  • DMA 进一步将 I/O 请求发送给磁盘;
  • 磁盘收到 DMA 的 I/O 请求,把数据从磁盘读取到磁盘控制器的缓冲区中,当磁盘控制器的缓冲区被读满后,向 DMA 发起中断信号,告知自己缓冲区已满;
  • DMA 收到磁盘的信号,将磁盘控制器缓冲区中的数据拷贝到内核缓冲区中,此时不占用 CPU,CPU 可以执行其他任务
  • 当 DMA 读取了足够多的数据,就会发送中断信号给 CPU;
  • CPU 收到 DMA 的信号,知道数据已经准备好,于是将数据从内核拷贝到用户空间,系统调用返回;

可以看到, CPU 不再参与「将数据从磁盘控制器缓冲区搬运到内核空间」的工作,这部分工作全程由 DMA 完成。但是 CPU 在这个过程中也是必不可少的,因为传输什么数据,从哪里传输到哪里,都需要 CPU 来告诉 DMA 控制器。

早期 DMA 只存在在主板上,如今由于 I/O 设备越来越多,数据传输的需求也不尽相同,所以每个 I/O 设备里面都有自己的 DMA 控制器。

4.2 传统的文件传输性能有多糟糕?

如果服务端要提供文件传输的功能,我们能想到的最简单的方式是:将磁盘上的文件读取出来,然后通过网络协议发送给客户端。

传统 I/O 的工作方式是,数据读取和写入是从用户空间到内核空间来回复制,而内核空间的数据是通过操作系统层面的 I/O 接口从磁盘读取或写入。

代码通常如下,一般会需要两个系统调用:

read(file, tmp_buf, len);
write(socket, tmp_buf, len);

期间发生的过程:

操作系统内存管理相关_第17张图片

首先,期间共发生了 4 次用户态与内核态的上下文切换,因为发生了两次系统调用,一次是 read() ,一次是 write(),每次系统调用都得先从用户态切换到内核态,等内核完成任务后,再从内核态切换回用户态。

上下文切换到成本并不小,一次切换需要耗时几十纳秒到几微秒,虽然时间看上去很短,但是在高并发的场景下,这类时间容易被累积和放大,从而影响系统的性能。

其次,还发生了 4 次数据拷贝,其中两次是 DMA 的拷贝,另外两次则是通过 CPU 拷贝的,下面说一下这个过程:

  • 第一次拷贝:把磁盘上的数据拷贝到操作系统内核的缓冲区里,这个拷贝的过程是通过 DMA 搬运的。
  • 第二次拷贝:把内核缓冲区的数据拷贝到用户的缓冲区里,于是我们应用程序就可以使用这部分数据了,这个拷贝到过程是由 CPU 完成的。
  • 第三次拷贝:把刚才拷贝到用户的缓冲区里的数据,再拷贝到内核的 socket 的缓冲区里,这个过程依然还是由 CPU 搬运的。
  • 第四次拷贝:把内核的 socket 缓冲区里的数据,拷贝到网卡的缓冲区里,这个过程又是由 DMA 搬运的。

我们回过头看这个文件传输的过程,我们只是搬运一份数据,结果却搬运了 4 次,过多的数据拷贝无疑会消耗 CPU 资源,大大降低了系统性能。

这种简单又传统的文件传输方式,存在冗余的上文切换和数据拷贝,在高并发系统里是非常糟糕的,多了很多不必要的开销,会严重影响系统性能。

要想提高文件传输的性能,就需要减少「用户态与内核态的上下文切换」和「内存拷贝」的次数

4.3 如何优化文件传输性能?

先来看看,如何减少「用户态与内核态的上下文切换」的次数呢?

读取磁盘数据的时候,之所以要发生上下文切换,这是因为用户空间没有权限操作磁盘或网卡,内核的权限最高,这些操作设备的过程都需要交由操作系统内核来完成,所以一般要通过内核去完成某些任务的时候,就需要使用操作系统提供的系统调用函数。

而一次系统调用必然会发生 2 次上下文切换:首先从用户态切换到内核态,当内核执行完任务后,再切换回用户态交由进程代码执行。

所以,要想减少上下文切换到次数,就要减少系统调用的次数

再来看看,如何减少「数据拷贝」的次数?

在前面我们知道了,传统的文件传输方式会历经 4 次数据拷贝,而且这里面,「从内核的读缓冲区拷贝到用户的缓冲区里,再从用户的缓冲区里拷贝到 socket 的缓冲区里」,这个过程是没有必要的。

因为文件传输的应用场景中,在用户空间我们并不会对数据「再加工」,所以数据实际上可以不用搬运到用户空间,因此用户的缓冲区是没有必要存在的

4.4 如何实现零拷贝

零拷贝技术实现的方式通常有 2 种:

  • mmap + write
  • sendfile

下面就谈一谈,它们是如何减少「上下文切换」和「数据拷贝」的次数。

mmap + write

在前面我们知道,read() 系统调用的过程中会把内核缓冲区的数据拷贝到用户的缓冲区里,于是为了减少这一步开销,我们可以用 mmap() 替换 read() 系统调用函数。

#include

buf = mmap(file, len);
write(sockfd, buf, len);

mmap() 系统调用函数会直接把内核缓冲区里的数据「映射」到用户空间,这样,操作系统内核与用户空间就不需要再进行任何的数据拷贝操作。

操作系统内存管理相关_第18张图片

具体过程如下:

  • 应用进程调用了 mmap() 后,DMA 会把磁盘的数据拷贝到内核的缓冲区里。接着,应用进程跟操作系统内核「共享」这个缓冲区;
  • 应用进程再调用 write(),操作系统直接将内核缓冲区的数据拷贝到 socket 缓冲区中,这一切都发生在内核态,由 CPU 来搬运数据;
  • 最后,把内核的 socket 缓冲区里的数据,拷贝到网卡的缓冲区里,这个过程是由 DMA 搬运的。

我们可以得知,通过使用 mmap() 来代替 read(), 可以减少一次数据拷贝的过程。

但这还不是最理想的零拷贝,因为仍然需要通过 CPU 把内核缓冲区的数据拷贝到 socket 缓冲区里,而且仍然需要 4 次上下文切换,因为系统调用还是 2 次。

sendfile
Linux 内核 2.1 版本中

提供了一个专门发送文件的系统调用函数 sendfile(),函数形式如下:

#include 
ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

它的前两个参数分别是目的端和源端的文件描述符,后面两个参数是源端的偏移量和复制数据的长度,返回值是实际复制数据的长度。

首先,它可以替代前面的 read() 和 write() 这两个系统调用,这样就可以减少一次系统调用,也就减少了 2 次上下文切换的开销。

其次,该系统调用,可以直接把内核缓冲区里的数据拷贝到 socket 缓冲区里,不再拷贝到用户态,这样就只有 2 次上下文切换,和 3 次数据拷贝。如下图:

操作系统内存管理相关_第19张图片

但是这还不是真正的零拷贝技术,如果网卡支持 SG-DMA技术(和普通的 DMA 有所不同),我们可以进一步减少通过 CPU 把内核缓冲区里的数据拷贝到 socket 缓冲区的过程。

你可以在你的 Linux 系统通过下面这个命令,查看网卡是否支持 scatter-gather 特性:

$ ethtool -k eth0 | grep scatter-gather
scatter-gather: on
Linux 内核 2.4 版本后

对于支持网卡支持 SG-DMA 技术的情况下, sendfile() 系统调用的过程发生了点变化,具体过程如下:

  • 第一步,通过 DMA 将磁盘上的数据拷贝到内核缓冲区里;
  • 第二步,缓冲区描述符和数据长度传到 socket 缓冲区,这样网卡的 SG-DMA 控制器就可以直接将内核缓存中的数据拷贝到网卡的缓冲区里,此过程不需要将数据从操作系统内核缓冲区拷贝到 socket 缓冲区中,这样就减少了一次数据拷贝;

所以,这个过程之中,只进行了 2 次数据拷贝,如下图:

操作系统内存管理相关_第20张图片

这就是所谓的零拷贝(Zero-copy)技术,因为我们没有在内存层面去拷贝数据,也就是说全程没有通过 CPU 来搬运数据,所有的数据都是通过 DMA 来进行传输的。

零拷贝技术的文件传输方式相比传统文件传输的方式,减少了 2 次上下文切换和数据拷贝次数,只需要 2 次上下文切换和数据拷贝次数,就可以完成文件的传输,而且 2 次的数据拷贝过程,都不需要通过 CPU,2 次都是由 DMA 来搬运。

所以,总体来看,零拷贝技术可以把文件传输的性能提高至少一倍以上。

你可能感兴趣的:(操作系统,c++)