hmacsha256.h
#ifndef _HMAC_SHA_256_H_
#define _HMAC_SHA_256_H_
#define SHA256_BLOCKLEN 64ul //size of message block buffer
#define SHA256_DIGESTLEN 32ul //size of digest in uint8_t
#define SHA256_DIGESTINT 8ul //size of digest in uint32_t
// #ifndef PBKDF2_SHA256_STATIC
// #define PBKDF2_SHA256_DEF extern
// #else
// #define PBKDF2_SHA256_DEF static
// #endif
#include "stdint.h"
#define PBKDF2_SHA256_DEF extern
typedef struct sha256_ctx_t
{
uint64_t len; // processed message length
uint32_t h[SHA256_DIGESTINT]; // hash state
uint8_t buf[SHA256_BLOCKLEN]; // message block buffer
} SHA256_CTX;
PBKDF2_SHA256_DEF void sha256_init(SHA256_CTX *ctx);
PBKDF2_SHA256_DEF void sha256_update(SHA256_CTX *ctx, const uint8_t *m, uint32_t mlen);
// resets state: calls sha256_init
PBKDF2_SHA256_DEF void sha256_final(SHA256_CTX *ctx, uint8_t *md);
typedef struct hmac_sha256_ctx_t
{
uint8_t buf[SHA256_BLOCKLEN]; // key block buffer, not needed after init
uint32_t h_inner[SHA256_DIGESTINT];
uint32_t h_outer[SHA256_DIGESTINT];
SHA256_CTX sha;
} HMAC_SHA256_CTX;
PBKDF2_SHA256_DEF void hmac_sha256_init(HMAC_SHA256_CTX *hmac, const uint8_t *key, uint32_t keylen);
PBKDF2_SHA256_DEF void hmac_sha256_update(HMAC_SHA256_CTX *hmac, const uint8_t *m, uint32_t mlen);
// resets state to hmac_sha256_init
PBKDF2_SHA256_DEF void hmac_sha256_final(HMAC_SHA256_CTX *hmac, uint8_t *md);
PBKDF2_SHA256_DEF void pbkdf2_sha256(HMAC_SHA256_CTX *ctx,
const uint8_t *key, uint32_t keylen, const uint8_t *salt, uint32_t saltlen, uint32_t rounds,
uint8_t *dk, uint32_t dklen);
#endif // _HMAC_SHA_256_H_
hmacsha256.c
#include "hmacsha256.h"
#include
//#define ROR(n,k) ((n >> k) | (n << (32 - k)))
static uint32_t ror(uint32_t n, uint32_t k)
{
return (n >> k) | (n << (32 - k));
}
#define ROR(n,k) ror(n,k)
#define CH(x,y,z) (z ^ (x & (y ^ z)))
#define MAJ(x,y,z) ((x & y) | (z & (x | y)))
#define S0(x) (ROR(x, 2) ^ ROR(x,13) ^ ROR(x,22))
#define S1(x) (ROR(x, 6) ^ ROR(x,11) ^ ROR(x,25))
#define R0(x) (ROR(x, 7) ^ ROR(x,18) ^ (x>>3))
#define R1(x) (ROR(x,17) ^ ROR(x,19) ^ (x>>10))
static const uint32_t K[64] =
{
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static void sha256_transform(SHA256_CTX *s, const uint8_t *buf)
{
uint32_t t1, t2, a, b, c, d, e, f, g, h, m[64];
uint32_t i, j;
for (i = 0, j = 0; i < 16; i++, j += 4)
{
m[i] = (uint32_t) buf[j] << 24 | (uint32_t) buf[j + 1] << 16 |
(uint32_t) buf[j + 2] << 8 | (uint32_t) buf[j + 3];
}
for (; i < 64; i++)
{
m[i] = R1(m[i - 2]) + m[i - 7] + R0(m[i - 15]) + m[i - 16];
}
a = s->h[0];
b = s->h[1];
c = s->h[2];
d = s->h[3];
e = s->h[4];
f = s->h[5];
g = s->h[6];
h = s->h[7];
for (i = 0; i < 64; i++)
{
t1 = h + S1(e) + CH(e, f, g) + K[i] + m[i];
t2 = S0(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
s->h[0] += a;
s->h[1] += b;
s->h[2] += c;
s->h[3] += d;
s->h[4] += e;
s->h[5] += f;
s->h[6] += g;
s->h[7] += h;
}
PBKDF2_SHA256_DEF void sha256_init(SHA256_CTX *s)
{
s->len = 0;
s->h[0] = 0x6a09e667;
s->h[1] = 0xbb67ae85;
s->h[2] = 0x3c6ef372;
s->h[3] = 0xa54ff53a;
s->h[4] = 0x510e527f;
s->h[5] = 0x9b05688c;
s->h[6] = 0x1f83d9ab;
s->h[7] = 0x5be0cd19;
}
PBKDF2_SHA256_DEF void sha256_final(SHA256_CTX *s, uint8_t *md)
{
uint32_t r = s->len % SHA256_BLOCKLEN;
int i;
//pad
s->buf[r++] = 0x80;
if (r > 56)
{
memset(s->buf + r, 0, SHA256_BLOCKLEN - r);
r = 0;
sha256_transform(s, s->buf);
}
memset(s->buf + r, 0, 56 - r);
s->len *= 8;
s->buf[56] = s->len >> 56;
s->buf[57] = s->len >> 48;
s->buf[58] = s->len >> 40;
s->buf[59] = s->len >> 32;
s->buf[60] = s->len >> 24;
s->buf[61] = s->len >> 16;
s->buf[62] = s->len >> 8;
s->buf[63] = s->len;
sha256_transform(s, s->buf);
for (i = 0; i < SHA256_DIGESTINT; i++)
{
md[4 * i ] = s->h[i] >> 24;
md[4 * i + 1] = s->h[i] >> 16;
md[4 * i + 2] = s->h[i] >> 8;
md[4 * i + 3] = s->h[i];
}
sha256_init(s);
}
PBKDF2_SHA256_DEF void sha256_update(SHA256_CTX *s, const uint8_t *m, uint32_t len)
{
const uint8_t *p = m;
uint32_t r = s->len % SHA256_BLOCKLEN;
s->len += len;
if (r)
{
if (len + r < SHA256_BLOCKLEN)
{
memcpy(s->buf + r, p, len);
return;
}
memcpy(s->buf + r, p, SHA256_BLOCKLEN - r);
len -= SHA256_BLOCKLEN - r;
p += SHA256_BLOCKLEN - r;
sha256_transform(s, s->buf);
}
for (; len >= SHA256_BLOCKLEN; len -= SHA256_BLOCKLEN, p += SHA256_BLOCKLEN)
{
sha256_transform(s, p);
}
memcpy(s->buf, p, len);
}
#define INNER_PAD '\x36'
#define OUTER_PAD '\x5c'
PBKDF2_SHA256_DEF void hmac_sha256_init(HMAC_SHA256_CTX *hmac, const uint8_t *key, uint32_t keylen)
{
SHA256_CTX *sha = &hmac->sha;
uint32_t i;
if (keylen <= SHA256_BLOCKLEN)
{
memcpy(hmac->buf, key, keylen);
memset(hmac->buf + keylen, '\0', SHA256_BLOCKLEN - keylen);
}
else
{
sha256_init(sha);
sha256_update(sha, key, keylen);
sha256_final(sha, hmac->buf);
memset(hmac->buf + SHA256_DIGESTLEN, '\0', SHA256_BLOCKLEN - SHA256_DIGESTLEN);
}
for (i = 0; i < SHA256_BLOCKLEN; i++)
{
hmac->buf[ i ] = hmac->buf[ i ] ^ OUTER_PAD;
}
sha256_init(sha);
sha256_update(sha, hmac->buf, SHA256_BLOCKLEN);
// copy outer state
memcpy(hmac->h_outer, sha->h, SHA256_DIGESTLEN);
for (i = 0; i < SHA256_BLOCKLEN; i++)
{
hmac->buf[ i ] = (hmac->buf[ i ] ^ OUTER_PAD) ^ INNER_PAD;
}
sha256_init(sha);
sha256_update(sha, hmac->buf, SHA256_BLOCKLEN);
// copy inner state
memcpy(hmac->h_inner, sha->h, SHA256_DIGESTLEN);
}
PBKDF2_SHA256_DEF void hmac_sha256_update(HMAC_SHA256_CTX *hmac, const uint8_t *m, uint32_t mlen)
{
sha256_update(&hmac->sha, m, mlen);
}
PBKDF2_SHA256_DEF void hmac_sha256_final(HMAC_SHA256_CTX *hmac, uint8_t *md)
{
SHA256_CTX *sha = &hmac->sha;
sha256_final(sha, md);
// reset sha to outer state
memcpy(sha->h, hmac->h_outer, SHA256_DIGESTLEN);
sha->len = SHA256_BLOCKLEN;
sha256_update(sha, md, SHA256_DIGESTLEN);
sha256_final(sha, md); // md = D(outer || D(inner || msg))
// reset sha to inner state -> reset hmac
memcpy(sha->h, hmac->h_inner, SHA256_DIGESTLEN);
sha->len = SHA256_BLOCKLEN;
}
PBKDF2_SHA256_DEF void pbkdf2_sha256(HMAC_SHA256_CTX *hmac,
const uint8_t *key, uint32_t keylen, const uint8_t *salt, uint32_t saltlen, uint32_t rounds,
uint8_t *dk, uint32_t dklen)
{
uint8_t *U;
uint8_t *T;
uint8_t count[4];
uint32_t i, j, k;
uint32_t len;
uint32_t hlen = SHA256_DIGESTLEN;
uint32_t l = dklen / hlen + ((dklen % hlen) ? 1 : 0);
uint32_t r = dklen - (l - 1) * hlen;
hmac_sha256_init(hmac, key, keylen);
U = hmac->buf;
T = dk;
len = hlen;
for (i = 1; i <= l; i++)
{
if (i == l) { len = r; }
count[0] = (i >> 24) & 0xFF;
count[1] = (i >> 16) & 0xFF;
count[2] = (i >> 8) & 0xFF;
count[3] = (i) & 0xFF;
hmac_sha256_update(hmac, salt, saltlen);
hmac_sha256_update(hmac, count, 4);
hmac_sha256_final(hmac, U);
memcpy(T, U, len);
for (j = 1; j < rounds; j++)
{
hmac_sha256_update(hmac, U, hlen);
hmac_sha256_final(hmac, U);
for (k = 0; k < len; k++)
{
T[k] ^= U[k];
}
}
T += len;
}
}
调用
string hmacSha256(unsigned char *SignData, unsigned char *szSecret)
{
uint8_t outSign[SHA256_DIGESTLEN] = {0};
uint8_t outdata[SHA256_DIGESTLEN] = {0};
HMAC_SHA256_CTX hmac;
hmac_sha256_init(&hmac, szSecret, strlen((char *)szSecret));
hmac_sha256_update(&hmac, SignData, strlen((char *)SignData));
hmac_sha256_final(&hmac, outSign);
memset(outdata, 0, strlen((char *)outdata)+1);
memcpy(outdata, outSign, SHA256_DIGESTLEN);
char szOutdata[SHA256_DIGESTLEN] = {0};
string strSign;
for(int i = 0; i < SHA256_DIGESTLEN; i++)
{
sprintf(szOutdata, "%02X", outdata[i]);
strSign += szOutdata;
}
return strSign;
}
亲测可用。