深入剖析红黑树:优雅地平衡二叉搜索树

深入剖析红黑树:优雅地平衡二叉搜索树_第1张图片

目录

  • 一.红黑树的概念
    • 二.插入操作
      • 三.与AVL树的比较

一.红黑树的概念

在之前的学习中,我们了解了二叉搜索平衡树,AVL树通过控制每个结点中的平衡因子的绝对值不超过1,实现了一个高性能的树。而相较于AVL的高度平衡,红黑树觉得AVL为了平衡也付出了代价(插入和删除时进行了多次旋转),所以红黑树在控制平衡上面没有这么严格,只是要求,最长路径不超过最短路径的二倍。那红黑树又是如何控制实现的呢?接下来了解一下红黑树的性质:

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的(任何路径上没有连续两个红结点)
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点,也称为NIL结点

二.插入操作

在我们了解红黑树的性质后,就需要分析相关代码看他如何实现的。首先我们看红黑树结点的定义:
因为map和set的底层使用红黑树实现了,为了之后方便,这里红黑树用了两个模板参数。

#include 

using namespace std;

enum Colour
{
	RED, BLACK
};

template<class K,class V>
class RBTreeNode
{
public:
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	Colour _col;

	RBTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_col(RED)
	{}
};

结点定义中与AVL树差距不大,只是多了个用枚举定义的参数,用来指定是红结点还是黑结点。接下来讲解重点的插入操作:
首先因为红黑树也是二叉搜索树,所以要满足二叉搜索树的基本性质,再者是我们插入的结点的颜色先置为什么能让后面的调整更方便呢。如果黑色需要在后面依据性质4调整,插入红色的话依据性质3调整。明显是4更为复杂,所以我们插入颜色为红色

bool Insert(const pair<K, V>& kv)
{
	if(_root == nullptr)
	{
		_root = new Node(kv);
		_root->_col = BLACK;
		return true;
	}
	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (kv.first > cur->_kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (kv.first < cur->_kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}
	cur = new Node(kv);
	cur->_col = RED;

	if (parent->_kv.first > cur->_kv.first)
	{
		parent->_left = cur;
	}
	else
	{
		parent->_right = cur;
	}
	cur->_parent = parent;
	///开始调整颜色
	///开始调整颜色
	_root->_col = BLACK;
	return true;
}

上段代码是不涉及调整颜色,只保证二叉搜索树性质。下面开始分类讨论研究如何调整颜色。
深入剖析红黑树:优雅地平衡二叉搜索树_第2张图片

如上图所示,插入的cur结点是红色,这时出现了连续的两个红结点,所以就要进行调整。如果parent结点是黑色则不需要调整。我们把10结点和20结点称为parent和grandfather结点,22为uncle结点
1.当uncle结点为红色时,变色然后继续向上调整
深入剖析红黑树:优雅地平衡二叉搜索树_第3张图片
2.当uncle结点不存在时或者为黑时的处理方式相同:
深入剖析红黑树:优雅地平衡二叉搜索树_第4张图片
完整代码如下:

	bool Insert(const pair<K, V>& kv)
	{
		if(_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (kv.first > cur->_kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kv.first < cur->_kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		cur->_col = RED;

		if (parent->_kv.first > cur->_kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;//叔叔存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在或者为黑都是旋转+变色
				{
					if (cur == parent->_left)
					{
						RevoR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						RevoL(parent);
						RevoR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
				}
			}
			else
			{
				Node* uncle = grandfather->_left;//叔叔存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在或者为黑都是旋转+变色
				{
					if (cur == parent->_left)
					{
						RevoR(parent);
						RevoL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						RevoL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
				}
			}
		}

		_root->_col = BLACK;
		return true;
	}
	void RevoL(Node* parent)
	{
		Node* cur = parent->_right;
		Node* curleft = cur->_left;
		parent->_right = curleft;//无论curleft是否为空都要执行这一步

		if (curleft)
		{
			curleft->_parent = parent;
		}
		cur->_left = parent;
		Node* ppnode = parent->_parent;
		parent->_parent = cur;

		if (parent == _root)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;

			}
			cur->_parent = ppnode;
		}

	}

	void RevoR(Node* parent)
	{
		Node* cur = parent->_left;
		Node* curright = cur->_right;
		parent->_left = curright;

		if (curright)
		{
			curright->_parent = parent;
		}
		cur->_right = parent;
		Node* ppnode = parent->_parent;
		parent->_parent = cur;
		if (_root == parent)//等价于 ppnode == nullptr
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			cur->_parent = ppnode;
			if (ppnode->_left == parent)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;
			}
		}
	}

三.与AVL树的比较

红黑树和AVL树的插入效率O(logN),只是红黑树不像AVL追求如此平衡,所以旋转次数会少,并且实现也较简单。所以在实践中大都使用红黑树。之后我们还是使用红黑树模拟实现map和set

你可能感兴趣的:(C++:开懂,c++,数据结构)