国庆假期作业6

一、ARM的工作模式

1、非特权模式

        user模式:非特权模式,大部分任务执行在这种模式

2、特权模式

        异常模式:

        FIQ : 当一个快速(fast) 中断产生时将会进入这种模式

        IRQ : 当一个通用(normal) 中断产生时将会进入这种模式

        Supervisor(svc) :当复位或软中断指令执行时将会进入这种模式

        Abort : 当存取异常时将会进入这种模式

        Undef : 当执行未定义指令时会进入这种模式        

        非异常模式:

        System : 使用和User模式相同寄存器集的特权模式

二、汇编语言的相关语法

1、汇编语言的组成部分

1.伪操作:不参与程序的执行,但是用于告诉编译器程序该怎么编译
.text 
.global  .end   .if  .else  .endif  .data

2.汇编指令
编译器将一条汇编指令编译成一条机器码,在内存里一条指令占4字节内存,一条指令可以实现一个特定的功能

3.伪指令
不是指令,看起来像是一条指令,可以实现和指令类似的功能。一条伪指令实际上可能是由多条指令共同实现

4.注释
单行注释:   @
多行注释   /*  */
条件编译
     .if 0
       指令段
      .else
        指令段
      .endif

2.汇编指令的介绍

1.基本数据操作指令
    数据搬移指令   =
    数据移位指令   << >>  
    数据算数运算指令   + - * /
    位运算指令    &   | ~  ^
    数据比较指令
2.跳转指令
3.内存读写指令
4.状态寄存器读写指令
5.软中断指令

3.汇编指令的基本语法格式

    指令的基本格式:
{}{s}  ,  ,  
    解释:
    
:指令码
     {}:条件码
     {s}:状态位,如果在指令后面加上s,则运算的结果会影响CPSR的条件位
     :目标寄存器
     :第一操作寄存器  只能是寄存器
     :第二操作数,可以是寄存器,也可以是立即数
  按照指令码将第一操作寄存器和第二操作数进行运算,将运算后的结果保存在目标寄存器
  
注意:      
1.一条汇编指令一般占一行
2.汇编不区分大写小写                         

三、汇编指令

1.数据搬移指令

{}{s}  ,  
解释:
    
:指令码
     {}:条件码
     {s}:状态位,如果在指令后面加上s,则运算的结果会影响CPSR的条件位
     :目标寄存器
     :第一操作数,可以是寄存器,也可以是立即数
  按照指令码将第一操作数运算后的结果保存在目标寄存器
  
指令码功能:
    mov:将第一操作数的值保存在目标寄存器
    mvn:将第一操作数的值按位取反,将结果保存在目标寄存器

2、移位指令

2.1 格式以及指令码

格式:{}{s}  ,  ,  
解释:将第一操作寄存器的数值移位第二操作数指定的位数,将结果保存在目标寄存器中

指令码:
LSL:左移运算  低位补0
LSR:右移运算   高位补0
ROR:循环右移:低位移出的值补到高位

2.2 示例

1.左移
        mov r0,#0XFF
    lsl r1,r0,#0X4  @将R0的值左移4位保存在r1寄存器  R1结果:0XFF0
 2.右移
 mov r0,#0XFF
lsr r1,r0,#0X4  @将R0的值右移4位保存在r1寄存器  R1结果:0XF
3.循环右移
mov r0,#0XFF
ror r1,r0,#0X4  @将R0的值循环右移4位保存在r1寄存器  R1结果:0XF000000F
4.c风格写法
mov r0,#0XFF
ror r1,r0,#(0X1<<2)  @将R0的值循环右移4位保存在r1寄存器  R1结果:0XF000000F

3.位运算指令

3.1 格式以及功能码

格式:{}{s}  ,  ,  
解释:将第一操作寄存器和第二操作数进行位运算,将结果保存在目标寄存器中

指令码:
    and:与 与0清0 与1不变
    orr:或  或1置1 或0不变
    eor:异或  相同为0 不同为1
    bic:按位清零指令,想将哪一位设置为0,只需要用bic指令给这一位运算一个1即可

3.2 示例

1.and:
mov r0,#0XFF
    and r1,r0,#0XF0  @R1结果为0XF0
 2.ORR:
     mov r0,#0XFF
    orr r1,r0,#0XF000  @R1结果为0XF0FF
3.EOR:
    ldr r0,=0xf0f0
    EOr r1,r0,#0XFF  @R1结果为0XF00F
0000 0000 0000 0000 0000 0000 1111 1111
0000 0000 0000 0000 1111 0000 1111 0000
结果:0000 0000 0000 0000 1111 0000 0000 1111 -》0XF00F

4.BIC
 ldr r0,=0xFF
    BIC r0,r0,#(0x1<<5)  @将R0的值第5位清0 @R0结果为0XDF

3.3 练习

LDR r1,=0X12345678  @将0X12345678存放在r1寄存器
0001 0010 0011 0100 0101 0110 0111 1000
1.将R1寄存器的第4位清0,其他位不变
        and r1,r1,#(~(0X1<<4))
    或者BIC R1,R1,#(0x1<<4)
2.将r1寄存器第7位置1,其他位不变
orr r1,r1,#(0X1<<7)
3.将r1寄存器[31:28]清0,其他位不变
and r1,r1,#(~(0Xf<<28))
    或者BIC R1,R1,#(0xF<<28)
4.将r1寄存器[7:4]置1,其他位不变
orr r1,r1,#(0XF<<4)
5.将r1寄存器[15:11]设置为10101,其他位不变 
    @先清0
    BIC R1,R1,#(0X1F<<11)
    @再置位
    orr r1,r1,#(0X15<<11)

4.算数运算指令

4.1 格式以及指令码

格式:{}{s}  ,  ,  
解释:将第一操作寄存器的值和第二操作数进行算数运算,结果保存在目标寄存器中

add:加法运算
adc:进行加法运算时需要考虑CPSR的条件位
sub:减法运算
sbc:进行减法运算时需要考虑CPSR的条件位
mul:乘法运算

4.2 示例

1.ADD:加法
  ex1:  mov r1,#1
      mov r2,#2
     add r3,r1,r2@r3=r1+r2
  ex:
      mov r1,#0XFFFFFFFE
    mov r2,#2
    addS r3,r1,r2@r3=r1+r2  @运算的结果影响到条件位
2.SUB
        mov r1,#0XFFFFFFFE
    mov r2,#2
    sub r3,r1,r2@r3=r1-r2
 ex2:
         mov r1,#0XFFFFFFFE
    mov r2,#2
    subs r3,r2,r1@r3=r2-r1 
3.ADC
mov r1,#0XFFFFFFFE
mov r2,#2
    ADDS r3,r2,r1 @r3=r1+r2 
    ADC R4,R2,#3  @R4=R2+3+cpsr(C位)  6 
 
4.sbc:减法运算考虑条件位
mov r1,#0XFFFFFFFE
    mov r2,#2
      SUBS r3,r2,r1 @r3=R2-R1    4
    sbC R4,R1,#3  @R4=R1-3-CPSR(C位取反)

4.3 64位数据进行算数运算

原则:
一个 64位数保存在两个寄存器
高32位运算,低32位运算
     mov r1,#0XFFFFFFFE  @保存第一个数据的低32位
    mov r2,#2@保存第一个数据的高32位
    mov r3,#3 @保存第二个数据的低32位
    mov r4,#4 @保存第2数据的高32位
    @低32位运算要求影响条件位
    ADDS R5,R1,R3@R5保存运算后结果的低32位
    ADC R6,R2,R4@R6寄存器保存运算结果的高32位,需要考虑条件位
    

5.比较指令

格式:
    cmp 第一操作数,第二操作寄存器
    比较两个数据
cmp命令本质:实际上就是比较的两个数进行减法运算,并且减法运算的结果会影响到CPSR寄存器的条件位
通常比较指令完毕之后会使用条件码进行判断,根据判断的结果做不同的逻辑
mov r1,#3
        mov r2,#4
        cmp r1,r2  @比较两个数
        SUBHI r3,r1,r2  @如果r1>r2 进行减法运算
        MULEQ r3,r1,r2@如果两数相等,进行乘法运算
        ADDCC R3,R1,R2@如果r1

6. 跳转指令

格式:
{} 标签
功能:跳转到指定的标签下

指令码:
b:跳转时不影响LR寄存器的值

ex:.text
.global  _start
    
_start:
        mov r1,#3
        mov r2,#4
        b fun1 @程序跳转
        mul r5,r1,r2
    
stop:
    b stop  

fun1:
    add r4,r1,r2

    
    
.end
    

bl:跳转时影响LR寄存器的值

.text
.global  _start
    
_start:
        mov r1,#3
mov r2,#4
        bl fun1 @程序跳转
        mul r5,r1,r2
    
stop:
    b stop  

fun1:
    add r4,r1,r2
    mov pc,lr @程序返回

    
    
.end
    

7.单寄存器内存读写指令

向内存中写:
str:向内存中写一个字(4字节)的数据
strh:向内存写半个字(2字节)的数据
strb:向内存写一个字节的数据
从内存读:
ldr:从内存读取一个字的数据
ldrh:从内存读取半个字的数据
ldrb:从内存读取一个字节的数据
 mov r1,#0XFFFFFFFF
    ldr r2,=0X40000000
    @向内存写入
    str r1,[r2]
    @从内存读
    ldr r3,[r2]

8.批量寄存器的内存读写方式

mov r1,#1
    mov r2,#2
    mov r3,#3
    mov r4,#4
    mov r5,#5
    ldr r6,=0X40000000
    stm r6,{r1,r2,r3,r4,r5}  @将r1-r6寄存器的值写道r6指向的连续内存中
    ldm r6,{r7,r8,r9,r10,r11}@从r6指向的连续内存中读取数据保存到r7-r11寄存器中

四、栈内存读写

1、栈的类型

增栈:压栈结束后,栈顶往地址大的方向增长
减栈:压栈结束后,栈顶往地址小的方向增长
空栈:压栈结束后,栈顶区域没有有效数据
满栈:压栈结束后,栈顶区域存放有效数据

空增栈(EA)/空减栈(ED)/满增栈(FA)/满减栈(FD)
ARM使用的栈是满减栈

国庆假期作业6_第1张图片

2、满减栈压栈的出栈操作

ex1:
  ldr sp,=0X40000020 @指定顶地址
    mov r1,#1
    mov r2,#2
    mov r3,#3
    mov r4,#4
    mov r5,#5
    push {r1-r5} @压栈
    pop {r6-r10}  @将栈顶元素数值出栈
ex2:
    ldr sp,=0X40000020 @指定顶地址
    mov r1,#1
    mov r2,#2
    mov r3,#3
    mov r4,#4
    mov r5,#5
    STMDB sp!,{r1-r5} @压栈
    LDMIA sp!,{r6-r10}  @将栈顶元素数值出栈
EX3:
    ldr sp,=0X40000020 @指定顶地址
    mov r1,#1
    mov r2,#2
    mov r3,#3
    mov r4,#4
    mov r5,#5
    STMfd sp!,{r1-r5} @压栈
    LDMfd sp!,{r6-r10}  @出栈
4.栈实例---叶子函数的调

3、栈实践,叶子函数的调用过程

.text  
.global _start 
            

_start:
    ldr sp,=0X40000020 @初始化栈
    b main
main:
    mov r1,#1
    mov r2,#2
    bl func
    add r3,r1,r2
    b main

func:
@压栈保护现场
    stmfd sp!,{r1,r2}
    mov r1,#3
    mov r2,#4
    sub r4,r2,r1
    @出栈恢复现场
    ldmfd sp!,{r1,r2}
    mov pc,lr  @返回main函数
    
    
wh: 
    b wh  
    
.end 
    

4、非叶子函数的调用过程

.text  
.global _start 
            

_start:
    ldr sp,=0X40000020 @初始化栈
    b main
main:
    mov r1,#1
    mov r2,#2
    bl func
    add r3,r1,r2
    b main

func:
@压栈保护现场
    stmfd sp!,{r1,r2,lr}
    mov r1,#3
    mov r2,#4
    bl fun1
    sub r4,r2,r1
    @出栈恢复现场
    ldmfd sp!,{r1,r2,lr}
    mov pc,lr  @返回main函数
fun1:
@压栈保护现场
    stmfd sp!,{r1,r2}
    mov r1,#4
    mov r2,#5
    mul r5,r1,r2
    @出栈恢复现场
    ldmfd sp!,{r1,r2}
    mov pc,lr
    
    
wh: 
    b wh  
    
.end 
    

你可能感兴趣的:(其他)