多普勒频率的推导(纯公式版)

多普勒频率的推导(纯公式版)

前奏

d = v Δ t d=v\Delta t d=vΔt
c τ = c Δ t + v Δ t c\tau=c\Delta t+v\Delta t cτ=cΔt+vΔt
c τ ′ = c Δ t − v Δ t c\tau'=c\Delta t-v\Delta t cτ=cΔtvΔt
c τ ′ c τ = c Δ t − v Δ t c Δ t + v Δ t \frac{c\tau'}{c\tau}=\frac{c\Delta t-v\Delta t}{c\Delta t+v\Delta t} cτcτ=cΔt+vΔtcΔtvΔt
τ ′ = c − v c + v τ \tau'=\frac{c-v}{c+v}\tau τ=c+vcvτ

方法一

d = v Δ t d=v\Delta t d=vΔt
c f r − d = c Δ t \frac{c}{f_r}-d=c\Delta t frcd=cΔt
Δ t = 1 c + v c f r \Delta t=\frac{1}{c+v}\frac{c}{f_r} Δt=c+v1frc
d = 1 f r c v c + v d = \frac{1}{f_r}\frac{cv}{c+v} d=fr1c+vcv
c f r ′ = c Δ t − v Δ t \frac{c}{f_r'}=c\Delta t-v\Delta t frc=cΔtvΔt
f r ′ = c + v c − v f r f_r'=\frac{c+v}{c-v}f_r fr=cvc+vfr
f 0 ′ = c + v c − v f 0 f_0'=\frac{c+v}{c-v}f_0 f0=cvc+vf0
f d = f 0 ′ − f 0 = c + v c − v f 0 − f 0 f_d=f_0'-f_0=\frac{c+v}{c-v}f_0-f_0 fd=f0f0=cvc+vf0f0
v < < c v<v<<c
c = λ f 0 c=\lambda f_0 c=λf0
f d = 2 v c f 0 = 2 v λ f_d=\frac{2v}{c}f_0=\frac{2v}{\lambda} fd=c2vf0=λ2v

方法二

R ( t ) = R 0 − v ∗ ( t − t 0 ) R(t)=R_0-v*(t-t_0) R(t)=R0v(tt0)
x r ( t ) = x ( t − ϕ ( t ) ) x_r(t)=x(t-\phi (t)) xr(t)=x(tϕ(t))
ϕ ( t ) = 2 c R ( t ) = 2 c ( R 0 − v t + v t 0 ) \phi (t)=\frac{2}{c}R(t)=\frac{2}{c}(R_0-vt+vt_0) ϕ(t)=c2R(t)=c2(R0vt+vt0)
x r ( t ) = x ( ( 1 + 2 v c ) t − ϕ 0 ) x_r(t)=x((1+\frac{2v}{c})t-\phi_0) xr(t)=x((1+c2v)tϕ0)
ϕ 0 = 2 R 0 c + 2 v c t 0 \phi_0=\frac{2R_0}{c}+\frac{2v}{c}t_0 ϕ0=c2R0+c2vt0
γ = 1 + 2 v c \gamma=1+\frac{2v}{c} γ=1+c2v
x r ( t ) = x ( γ t − ϕ 0 ) x_r(t)=x(\gamma t-\phi_0) xr(t)=x(γtϕ0)
x ( t ) = y ( t ) c o s ω 0 t x(t)=y(t)cos\omega_0 t x(t)=y(t)cosω0t
x r ( t ) = y ( γ t − ϕ 0 ) c o s ( γ ω 0 t − ω 0 ϕ 0 ) x_r(t)=y(\gamma t-\phi_0)cos(\gamma \omega_0 t-\omega_0\phi_0) xr(t)=y(γtϕ0)cos(γω0tω0ϕ0)
X r ( ω ) = 1 2 γ ( Y ( ω γ − ω 0 ) + Y ( ω γ + ω 0 ) ) X_r(\omega)=\frac{1}{2\gamma}(Y(\frac{\omega}{\gamma}-\omega_0)+Y(\frac{\omega}{\gamma}+\omega_0)) Xr(ω)=2γ1(Y(γωω0)+Y(γω+ω0))
ω d = ω 0 − γ ω 0 \omega_d=\omega_0-\gamma\omega_0 ωd=ω0γω0
f d = f 0 − γ f 0 f_d=f_0-\gamma f_0 fd=f0γf0
f d = 2 v c f 0 = 2 v λ f_d=\frac{2v}{c}f_0=\frac{2v}{\lambda} fd=c2vf0=λ2v

你可能感兴趣的:(数学)