本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。
为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。
由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。
给定一个大小为 n
的数组 nums
,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋
的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入:nums = [3,2,3]
输出:3
示例 2:
输入:nums = [2,2,1,1,1,2,2]
输出:2
提示:
n == nums.length
1 <= n <= 5 * 10^4
-109 <= nums[i] <= 10^9
进阶: 尝试设计时间复杂度为 O(n)、空间复杂度为 O(1) 的算法解决此问题。
题目集合:
由于题目要求时间复杂度 O ( n ) O(n) O(n) 和空间复杂度 O ( 1 ) O(1) O(1) ,因此符合要求的解法只有 Boyer-Moore 投票算法。这一投票算法在求出现次数大于 ⌊ n / 2 ⌋ \lfloor n / 2 \rfloor ⌊n/2⌋ 的元素 x x x 时很好理解:如果我们把 x x x 记为 + 1 +1 +1 ,把其他数记为 − 1 -1 −1 ,将它们全部加起来,显然和大于 0 0 0 ,从结果本身我们可以看出 x x x 比其他数多。
我们首先给出 Boyer-Moore 算法的详细步骤:
举一个具体的例子,例如下面的这个数组:
[7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7]
在遍历到数组中的第一个元素以及每个在 |
之后的元素时, c a n d i d a t e candidate candidate 都会因为 c o u n t count count 的值变为 0 0 0 而发生改变。最后一次 c a n d i d a t e candidate candidate 的值从 5 5 5 变为 7 7 7 ,也就是这个数组中的主要元素。
Boyer-Moore 算法的正确性较难证明,这里给出一种较为详细的用例子辅助证明的思路,供参考:
1.首先根据算法步骤中对 c o u n t count count 的定义,可以发现:在对整个数组进行遍历的过程中, c o u n t count count 的值一定非负。这是因为==如果 c o u n t count count 的值为 0 0 0 ,那么在这一轮遍历的开始时刻,我们会将 x x x 的值赋予 c a n d i d a t e candidate candidate 并在接下来的一步中将 c o u n t count count 的值增加 1 1 1 ==。因此 c o u n t count count 的值在遍历过程中一直保持非负。
2.那么 c o u n t count count 本身除了计数器之外,还有什么更深层次的意义呢?我们还是以数组:
[7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7]
作为例子,首先写下它在每一步遍历时 c a n d i d a t e candidate candidate 和 c o u n t count count 的值:
nums: [7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7]
candidate: 7 7 7 7 7 7 5 5 5 5 5 5 7 7 7 7
count: 1 2 1 2 1 0 1 0 1 2 1 0 1 2 3 4
我们再定义一个变量 v a l u e value value ,它和真正的主要元素 m a j maj maj 绑定。在每一步遍历时,如果当前的数 x x x 和 m a j maj maj 相等,那么 v a l u e value value 的值加 1 1 1 ,否则减 1 1 1 。 v a l u e value value 的实际意义即为:到当前的这一步遍历为止,主要元素出现的次数比非主要元素多出了多少次。我们将 v a l u e value value 的值也写在下方:
nums: [7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7]
value: 1 2 1 2 1 0 -1 0 -1 -2 -1 0 1 2 3 4
有没有发现什么?我们将 c o u n t count count 和 v a l u e value value 放在一起:
nums: [7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7]
count: 1 2 1 2 1 0 1 0 1 2 1 0 1 2 3 4
value: 1 2 1 2 1 0 -1 0 -1 -2 -1 0 1 2 3 4
发现在每一步遍历中, c o u n t count count 和 v a l u e value value 要么相等,要么互为相反数!并且在候选主要元素 c a n d i d a t e candidate candidate 就是 m a j maj maj 时,它们相等, c a n d i d a t e candidate candidate 是其它的数时,它们互为相反数!
为什么会有这么奇妙的性质呢?这并不难证明:我们将候选主要元素 c a n d i d a t e candidate candidate 保持不变的连续的遍历称为「一段」。在同一段中, c o u n t count count 的值是根据 c a n d i d a t e = = x candidate == x candidate==x 的判断进行加减的。那么如果 c a n d i d a t e candidate candidate 恰好为 m a j maj maj ,那么在这一段中, c o u n t count count 和 v a l u e value value 的变化是同步的;如果 c a n d i d a t e candidate candidate 不为 m a j maj maj ,那么在这一段中 c o u n t count count 和 v a l u e value value 的变化是相反的。因此就有了这样一个奇妙的性质。
这样以来,由于:
class Solution {
public:
int majorityElement(vector<int>& nums) {
int candidate = 0, count = 0;
for (int num : nums) {
if (count == 0) candidate = num;
if (candidate == num) ++count;
else --count;
}
count = 0;
for (int num : nums) if (num == candidate) ++count;
return count * 2 > nums.size() ? candidate : -1;
}
};
复杂度分析: