分桶策略清理SpringCache中的缓存

背景介绍

我们使用SpringCache框架 + Redis来实现项目中的缓存实现,它能实现自动对数据缓存,也可以自动清理过期的缓存。大多数情况下,它都运行非常好。

这是因为我们需要缓存的数据,通常都是可序列化的,但是我们迟早会遇到不可序列化的对象。那么我们只能选择SpringCache中的ConcurrentMapCache才能缓存这些不可序列化的对象,但是ConcurrentMapCache呢又不提供自动清理缓存的功能。

于是我开始自己设计一个本地的、高效的、能自动清理缓存扩展,同样它能支持SpringCache。

为了高效的清理缓存,我采用分桶策略,这一设计思想来源于ZooKeeper的Session管理。分桶策略也是本文的精彩内容。

SpringCache的使用

SpringCache + Redis自动清理缓存
@EnableCaching
@Configuration
public class RedisCacheAutoConfiguration {
   
    @Autowired
    private RedisConnectionFactory redisConnectionFactory;

    @Primary
    @Bean("redisCacheManager")
    public CacheManager cacheManager() {
        RedisCacheManager cacheManager = new RedisCacheManager(
                RedisCacheWriter.nonLockingRedisCacheWriter(redisConnectionFactory),
                getTtlRedisCacheConfiguration(CacheNameEnum.DEFAULT),
                getCustomizeTtlRedisCacheConfigurationMap());
        return cacheManager;
    }

   
    private Map getCustomizeTtlRedisCacheConfigurationMap() {
        Map redisCacheConfigurationMap = new HashMap<>();
        for (CacheNameEnum cacheNameEnum : CacheNameEnum.values()) {
            redisCacheConfigurationMap.put(cacheNameEnum.name(), getTtlRedisCacheConfiguration(cacheNameEnum));
        }
        return redisCacheConfigurationMap;
    }

    private RedisCacheConfiguration getTtlRedisCacheConfiguration(CacheNameEnum cacheNameEnum) {
        GenericFastJsonRedisSerializer fastJsonRedisSerializer = new GenericFastJsonRedisSerializer();
        StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();

        RedisSerializationContext.SerializationPair objectSerializationPair = RedisSerializationContext.SerializationPair.fromSerializer(fastJsonRedisSerializer);
        RedisSerializationContext.SerializationPair stringSerializationPair = RedisSerializationContext.SerializationPair.fromSerializer(stringRedisSerializer);

        RedisCacheConfiguration redisCacheConfiguration = RedisCacheConfiguration.defaultCacheConfig();
        redisCacheConfiguration = redisCacheConfiguration.serializeKeysWith(stringSerializationPair)
                .serializeValuesWith(objectSerializationPair)
                .entryTtl(Duration.ofSeconds(cacheNameEnum.getTtl()));
        return redisCacheConfiguration;
    }

    enum CacheNameEnum {
        DEFAULT(60);
        private int ttl;

        CacheNameEnum(int ttl) {
            this.ttl = ttl;
        }

        public int getTtl() {
            return ttl;
        }
    }
} 
   

那么使用的时候,就只需要增加注解就行了

@Cacheable(cacheManager = "redisCacheManager", cacheNames = "DEFAULT", key = "'nft:transafer:' + #mnemonic")
public Transafer recover(String mnemonic) {
    return new Transafer(mnemonic, wenchangChainPropertity);
}
SpringCache + Map本地缓存
// 记得加上@EnableCaching,开启缓存
@Bean("localCacheManager")
public CacheManager localCacheManager() {
    ConcurrentMapCache publicKeyCache = new ConcurrentMapCache("localCache");
    Set caches = new HashSet<>();
    caches.add(publicKeyCache);

    SimpleCacheManager cacheManager = new SimpleCacheManager();
    cacheManager.setCaches(caches);
    return cacheManager;
}

那么使用的时候,就只需要增加注解就行了

@Cacheable(cacheManager = "localCacheManager", cacheNames = "localCache", key = "'nft:transafer:' + #mnemonic")
public Transafer recover(String mnemonic) {
    return new Transafer(mnemonic, wenchangChainPropertity);
}
SpringCache + Map自动清理本地缓存

为了实现自动清理缓存,我继承了ConcurrentMapCache,采用分桶策略,定时清理。

  • • expirationInterval,桶的估计范围,如果为1分钟,那么1分钟内创建的缓存都存在一个桶,例如16:11:20和16:11:01,都会存放在16:12:00这个桶中。

  • • roundToNextInterval,用于根据当前时间计算,下一个桶的时间。

  • • executorService,用于清理缓存,仅仅在创建桶时,调用其该线程,并不会实时运行,占用CPU资源。

public class LocalExpiryCache extends ConcurrentMapCache {
    private static Logger log = LoggerFactory.getLogger(LocalExpiryCache.class);
    /**
     * 桶的范围
     */
    public final long expirationInterval;
    private static ScheduledExecutorService executorService = new ScheduledThreadPoolExecutor(5, NftThreadFactory.create("cache-cleara", true));
    private static final Map> expiryMap = new ConcurrentHashMap<>();

    public LocalExpiryCache(String name, long expirationInterval) {
        super(name);
        this.expirationInterval = expirationInterval;
    }


    @Override
    public void put(Object key, Object value) {
        log.info("=======put=======");
        super.put(key, value);
        long now = System.currentTimeMillis();
        long expires = roundToNextInterval(now);
        log.info("expires: " + DateUtil.formatDate(new Date(expires), DateUtil.FORMAT_DATETIME_NORMAL));
        if (!expiryMap.containsKey(expires)) {
            synchronized (this) {
                if (!expiryMap.containsKey(expires)) {
                    expiryMap.put(expires, new ConcurrentHashSet<>());
                    executorService.schedule((Runnable) this::expiry, expires - now + 100
                            , TimeUnit.MILLISECONDS);
                }
            }
        }
        Set objects = expiryMap.get(expires);
        objects.add(key);
    }

    @Override
    public ValueWrapper putIfAbsent(Object key, Object value) {
        log.info("=======putIfAbsent=======");
        return super.putIfAbsent(key, value);
    }

    private long roundToNextInterval(long time) {
        return (time / expirationInterval + 1) * expirationInterval;
    }

    public Set expiry() {
        log.info("-------------------------------------");
        long now = System.currentTimeMillis();
        Set ttls = expiryMap.keySet();
        if (CollectionUtils.isEmpty(ttls)) {
            return Collections.emptySet();
        }
        Iterator iterator = ttls.iterator();
        Set result = new HashSet();
        while (iterator.hasNext()) {
            Long expirationTime = iterator.next();
            if (now < expirationTime) {
                break;
            }
            result.addAll(expiryMap.get(expirationTime));
            iterator.remove();
        }
        for (Object key : result) {
            super.evict(key);
        }
        log.info("evict size: " + result.size());
        return result;
    }

    public static void main(String[] args) throws Exception {

        LocalExpiryCache localCache = new LocalExpiryCache("", 1 * 60 * 1000);
        localCache.put("1", "");
        localCache.put("2", "");

        log.info(localCache.getNativeCache().size() + "");
        Thread.sleep(1 * 60 * 1000);
        log.info(localCache.getNativeCache().size() + "");

        localCache.put("2", "");
        Thread.sleep(1 * 60 * 1000);
        log.info(localCache.getNativeCache().size() + "");

        System.in.read();
    }
} 
   

使用时,用LocalExpiryCache替换掉ConcurrentMapCache即可

@Bean("localCacheManager")
public CacheManager localCacheManager() {
    LocalExpiryCache publicKeyCache = new LocalExpiryCache("localCache", 1 * 60 * 1000);
    Set caches = new HashSet<>();
    caches.add(publicKeyCache);

    SimpleCacheManager cacheManager = new SimpleCacheManager();
    cacheManager.setCaches(caches);
    return cacheManager;
}

你可能感兴趣的:(java,redis,缓存,android,spring)