TCP相关面试题回答

源自4.1 TCP 三次握手与四次挥手面试题 | 小林coding (xiaolincoding.com)

摘抄的笔记,以及网上其他博主的内容以及加入了自己的理解,如有侵权请联系下架。

TCP 头格式有哪些?

我们先来看看 TCP 头的格式,标注颜色的表示与本文关联比较大的字段,其他字段不做详细阐述。

TCP 头格式

序列号:在建立连接时由计算机生成的随机数作为其初始值,通过 SYN 包传给接收端主机,每发送一次数据,就「累加」一次该「数据字节数」的大小。用来解决网络包乱序问题。

确认应答号:指下一次「期望」收到的数据的序列号,发送端收到这个确认应答以后可以认为在这个序号以前的数据都已经被正常接收。用来解决丢包的问题。

控制位:

  • SYN:该位为 1 时,表示希望建立连接,并在其「序列号」的字段进行序列号初始值的设定。
  • ACK:该位为 1 时,「确认应答」的字段变为有效,TCP 规定除了最初建立连接时的 SYN 包之外该位必须设置为 1 。
  • FIN:该位为 1 时,表示今后不会再有数据发送,希望断开连接。当通信结束希望断开连接时,通信双方的主机之间就可以相互交换 FIN 位为 1 的 TCP 段。
  •  RST:该位为 1 时,表示 TCP 连接中出现异常必须强制断开连接。

为什么需要 TCP 协议? TCP 工作在哪一层?

IP 层是「不可靠」的,它不保证网络包的交付、不保证网络包的按序交付、也不保证网络包中的数据的完整性。

TCP相关面试题回答_第1张图片

如果需要保障网络数据包的可靠性,那么就需要由上层(传输层)的 TCP 协议来负责。

因为 TCP 是一个工作在传输层可靠数据传输的服务,它能确保接收端接收的网络包是无损坏、无间隔、非冗余和按序的。

什么是 TCP ?

TCP 是面向连接的、可靠的、基于字节流的传输层通信协议。

TCP相关面试题回答_第2张图片

  • 面向连接:一定是「一对一」才能连接,不能像 UDP 协议可以一个主机同时向多个主机发送消息,也就是一对多是无法做到的;

  • 可靠的:无论的网络链路中出现了怎样的链路变化,TCP 都可以保证一个报文一定能够到达接收端;

  • 字节流:用户消息通过 TCP 协议传输时,消息可能会被操作系统「分组」成多个的 TCP 报文,如果接收方的程序如果不知道「消息的边界」,是无法读出一个有效的用户消息的。并且 TCP 报文是「有序的」,当「前一个」TCP 报文没有收到的时候,即使它先收到了后面的 TCP 报文,那么也不能扔给应用层去处理,同时对「重复」的 TCP 报文会自动丢弃。

什么是 TCP 连接?

我们来看看 RFC 793 是如何定义「连接」的:

简单来说就是,用于保证可靠性和流量控制维护的某些状态信息,这些信息的组合,包括Socket、序列号和窗口大小称为连接。

TCP相关面试题回答_第3张图片

所以我们可以知道,建立一个 TCP 连接是需要客户端与服务器端达成上述三个信息的共识。

  • Socket:由 IP 地址和端口号组成
  • 序列号:用来解决乱序问题等
  • 窗口大小:用来做流量控制

如何唯一确定一个 TCP 连接呢?

TCP 四元组可以唯一的确定一个连接,四元组包括如下:

  • 源地址
  • 源端口
  • 目的地址
  • 目的端口

TCP 四元组

源地址和目的地址的字段(32位)是在 IP 头部中,作用是通过 IP 协议发送报文给对方主机

源端口和目的端口的字段(16位)是在 TCP 头部中,作用是告诉 TCP 协议应该把报文发给哪个进程

有一个 IP 的服务器监听了一个端口,它的 TCP 的最大连接数是多少?

服务器通常固定在某个本地端口上监听,等待客户端的连接请求。

因此,客户端 IP 和 端口是可变的,其理论值计算公式如下:

UDP 和 TCP 有什么区别呢?分别的应用场景是?

UDP 不提供复杂的控制机制,利用 IP 提供面向「无连接」的通信服务。

UDP 协议真的非常简,头部只有 8 个字节( 64 位),UDP 的头部格式如下:

UDP 头部格式

  • 目标和源端口:主要是告诉 UDP 协议应该把报文发给哪个进程。
  • 包长度:该字段保存了 UDP 首部的长度跟数据的长度之和。
  • 校验和:校验和是为了提供可靠的 UDP 首部和数据而设计,防止收到在网络传输中受损的 UDP包。

TCP 和 UDP 区别:

1. 连接

  • TCP 是面向连接的传输层协议,传输数据前先要建立连接。
  • UDP 是不需要连接,即刻传输数据。

2. 服务对象

  • TCP 是一对一的两点服务,即一条连接只有两个端点。
  • UDP 支持一对一、一对多、多对多的交互通信

3. 可靠性

  • TCP 是可靠交付数据的,数据可以无差错、不丢失、不重复、按序到达。
  • UDP 是尽最大努力交付,不保证可靠交付数据。

4. 拥塞控制、流量控制

  • TCP 有拥塞控制和流量控制机制,保证数据传输的安全性。
  • UDP 则没有,即使网络非常拥堵了,也不会影响 UDP 的发送速率。

5. 首部开销

  • TCP 首部长度较长,会有一定的开销,首部在没有使用「选项」字段时是 20 个字节,如果使用了「选项」字段则会变长的。
  • UDP 首部只有 8 个字节,并且是固定不变的,开销较小。

6. 传输方式

  • TCP 是流式传输,没有边界,但保证顺序和可靠。
  • UDP 是一个包一个包的发送,是有边界的,但可能会丢包和乱序。

7. 分片不同

  • TCP 的数据大小如果大于 MSS 大小,则会在传输层进行分片,目标主机收到后,也同样在传输层组装 TCP 数据包,如果中途丢失了一个分片,只需要传输丢失的这个分片。
  • UDP 的数据大小如果大于 MTU 大小,则会在 IP 层进行分片,目标主机收到后,在 IP 层组装完数据,接着再传给传输层。

TCP 和 UDP 应用场景:

由于 TCP 是面向连接,能保证数据的可靠性交付,因此经常用于:

  • FTP 文件传输;
  • HTTP / HTTPS;

由于 UDP 面向无连接,它可以随时发送数据,再加上UDP本身的处理既简单又高效,因此经常用于:

  • 包总量较少的通信,如 DNS 、SNMP 等;
  • 视频、音频等多媒体通信;
  • 广播通信;

为什么 UDP 头部没有「首部长度」字段,而 TCP 头部有「首部长度」字段呢?

原因是 TCP 有可变长的「选项」字段,而 UDP 头部长度则是不会变化的,无需多一个字段去记录 UDP 的首部长度。

为什么 UDP 头部有「包长度」字段,而 TCP 头部则没有「包长度」字段呢?

结论:TCP和UDP的包长度都可以通过前面已有的数据计算出来:

UDP其实也不需要包长度,只是这个有了这个包长度可以保证首部长度需要是 4字节的整数倍。

TCP 连接建立

TCP 三次握手过程是怎样的?

TCP 是面向连接的协议,所以使用 TCP 前必须先建立连接,而建立连接是通过三次握手来进行的。三次握手的过程如下图:

TCP相关面试题回答_第4张图片

  • 一开始,客户端和服务端都处于 CLOSED 状态。先是服务端主动监听某个端口,处于 LISTEN 状态

TCP相关面试题回答_第5张图片

  • 客户端会随机初始化序号(client_isn),将此序号置于 TCP 首部的「序号」字段中,同时把 SYN 标志位置为 1 ,表示 SYN 报文。接着把第一个 SYN 报文发送给服务端,表示向服务端发起连接,该报文不包含应用层数据,之后客户端处于 SYN-SENT 状态。

TCP相关面试题回答_第6张图片

  • 服务端收到客户端的 SYN 报文后,首先服务端也随机初始化自己的序号(server_isn),将此序号填入 TCP 首部的「序号」字段中,其次把 TCP 首部的「确认应答号」字段填入 client_isn + 1, 接着把 SYN 和 ACK 标志位置为 1。最后把该报文发给客户端,该报文也不包含应用层数据,之后服务端处于 SYN-RCVD(received的缩写,表示接受了的 状态。

 TCP相关面试题回答_第7张图片

  • 客户端收到服务端报文后,还要向服务端回应最后一个应答报文,首先该应答报文 TCP 首部 ACK 标志位置为 1 ,其次「确认应答号」字段填入 server_isn + 1 ,最后把报文发送给服务端,这次报文可以携带客户到服务器的数据,之后客户端处于 ESTABLISHED 状态。

  • 服务器收到客户端的应答报文后,也进入 ESTABLISHED(已确认的) 状态。

从上面的过程可以发现第三次握手是可以携带数据的,前两次握手是不可以携带数据的,这也是面试常问的题。

一旦完成三次握手,双方都处于 ESTABLISHED 状态,此时连接就已建立完成,客户端和服务端就可以相互发送数据了。

三次握手的原因

“因为三次握手才能保证双方具有接收和发送的能力。”

这回答是没问题,但这回答是片面的,并没有说出主要的原因。

  • 三次握手才可以阻止重复历史连接的初始化(主要原因)
  • 三次握手才可以同步双方的初始序列号
  • 三次握手才可以避免资源浪费

简单来说,三次握手的首要原因是为了防止旧的重复连接初始化造成混乱。

我们考虑一个场景,客户端先发送了 SYN(seq = 90) 报文,然后客户端宕机了,而且这个 SYN 报文还被网络阻塞了,服务端并没有收到,接着客户端重启后,又重新向服务端建立连接,发送了 SYN(seq = 100) 报文(注意不是重传 SYN,重传的 SYN 的序列号是一样的)。

看看三次握手是如何阻止历史连接的:

三次握手避免历史连接

  • 一个「旧 SYN 报文」比「最新的 SYN 」 报文早到达了服务端;
  • 那么此时服务端就会回一个 SYN + ACK 报文给客户端;
  • 客户端收到后可以根据自身的上下文,判断这是一个历史连接(序列号过期或超时),那么客户端就会发送 RST 报文给服务端,表示中止这一次连接。

如果是两次握手连接,就无法阻止历史连接,那为什么 TCP 两次握手为什么无法阻止历史连接呢?

结论是,假如只使用两次握手,那么服务器就应该在第一次握手后就建立连接,这意味着服务器此时已经进入established状态,那么服务器就可以发送数据,假如发送了的话,如果这次其实是历史连接,那么客户端自然会舍弃掉这一次的连接,那么就会造成资源浪费。如图所示:

TCP相关面试题回答_第8张图片

也就是说接收方会在并不能确保当前连接是否是历史连接的情况下就发送资源,造成资源浪费。有了三次握手后才能保证此次连接不是历史连接。

原因二:同步双方初始序列号

TCP 协议的通信双方, 都必须维护一个「序列号」, 序列号是可靠传输的一个关键因素,它的作用:

  • 接收方可以去除重复的数据;
  • 接收方可以根据数据包的序列号按序接收;
  • 可以标识发送出去的数据包中, 哪些是已经被对方收到的(通过 ACK 报文中的序列号知道);

可见,序列号在 TCP 连接中占据着非常重要的作用,所以当客户端发送携带「初始序列号」的 SYN 报文的时候,需要服务端回一个 ACK 应答报文,表示客户端的 SYN 报文已被服务端成功接收,那当服务端发送「初始序列号」给客户端的时候,依然也要得到客户端的应答回应,这样一来一回,才能确保双方的初始序列号能被可靠的同步。

TCP相关面试题回答_第9张图片

四次握手其实也能够可靠的同步双方的初始化序号,但由于第二步和第三步可以优化成一步,所以就成了「三次握手」。

而两次握手只保证了一方的初始序列号能被对方成功接收,没办法保证双方的初始序列号都能被确认接收。

原因三:避免资源浪费

如果只有「两次握手」,当客户端的 SYN 请求连接在网络中阻塞,客户端没有接收到 ACK 报文,就会重新发送 SYN ,由于没有第三次握手,服务器不清楚客户端是否收到了自己发送的建立连接的 ACK 确认信号,所以每收到一个 SYN 就只能先主动建立一个连接,这会造成什么情况呢?

如果客户端的 SYN 阻塞了,重复发送多次 SYN 报文,那么服务器在收到请求后就会建立多个冗余的无效链接,造成不必要的资源浪费。

TCP相关面试题回答_第10张图片

即两次握手会造成消息滞留情况下,服务器重复接受无用的连接请求 SYN 报文,而造成重复分配资源。

小结

TCP 建立连接时,通过三次握手能防止历史连接的建立,能减少双方不必要的资源开销,能帮助双方同步初始化序列号。序列号能够保证数据包不重复、不丢弃和按序传输。

不使用「两次握手」和「四次握手」的原因:

  • 「两次握手」:无法防止历史连接的建立,会造成双方资源的浪费,也无法可靠的同步双方序列号;
  • 「四次握手」:三次握手就已经理论上最少可靠连接建立,所以不需要使用更多的通信次数。

TCP 连接断开

#TCP 四次挥手过程是怎样的?

天下没有不散的宴席,对于 TCP 连接也是这样, TCP 断开连接是通过四次挥手方式。

双方都可以主动断开连接,断开连接后主机中的「资源」将被释放,四次挥手的过程如下图:

客户端主动关闭连接 —— TCP 四次挥手

  • 客户端打算关闭连接,此时会发送一个 TCP 首部 FIN 标志位被置为 1 的报文,也即 FIN 报文,之后客户端进入 FIN_WAIT_1 状态。
  • 服务端收到该报文后,就向客户端发送 ACK 应答报文,接着服务端进入 CLOSED_WAIT 状态。
  • 客户端收到服务端的 ACK 应答报文后,之后进入 FIN_WAIT_2 状态。
  • 等待服务端处理完数据后,也向客户端发送 FIN 报文,之后服务端进入 LAST_ACK 状态。
  • 客户端收到服务端的 FIN 报文后,回一个 ACK 应答报文,之后进入 TIME_WAIT 状态
  • 服务器收到了 ACK 应答报文后,就进入了 CLOSED 状态,至此服务端已经完成连接的关闭。
  • 客户端在经过 2MSL 一段时间后,自动进入 CLOSED 状态,至此客户端也完成连接的关闭。

你可以看到,每个方向都需要一个 FIN 和一个 ACK,因此通常被称为四次挥手

这里一点需要注意是:主动关闭连接的,才有 TIME_WAIT 状态。

为什么挥手需要四次?

再来回顾下四次挥手双方发 FIN 包的过程,就能理解为什么需要四次了。

  • 关闭连接时,客户端向服务端发送 FIN 时,仅仅表示客户端不再发送数据了但是还能接收数据。
  • 服务器收到客户端的 FIN 报文时,先回一个 ACK 应答报文,而服务端可能还有数据需要处理和发送,等服务端不再发送数据时,才发送 FIN 报文给客户端来表示同意现在关闭连接。

从上面过程可知,服务端通常需要等待完成数据的发送和处理,所以服务端的 ACK 和 FIN 一般都会分开发送,从而比三次握手导致多了一次。

为什么 TIME_WAIT 等待的时间是 2MSL?

MSL 是 Maximum Segment Lifetime,报文最大生存时间,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。因为 TCP 报文基于是 IP 协议的,而 IP 头中有一个 TTL 字段,是 IP 数据报可以经过的最大路由数,每经过一个处理他的路由器此值就减 1,当此值为 0 则数据报将被丢弃,同时发送 ICMP 报文通知源主机。

MSL 与 TTL 的区别: MSL 的单位是时间,而 TTL 是经过路由跳数。所以 MSL 应该要大于等于 TTL 消耗为 0 的时间,以确保报文已被自然消亡。

TIME_WAIT 等待 2 倍的 MSL,比较合理的解释是: 网络中可能存在来自发送方的数据包,当这些发送方的数据包被接收方处理后又会向对方发送响应,所以一来一回需要等待 2 倍的时间

比如,如果被动关闭方没有收到断开连接的最后的 ACK 报文,就会触发超时重发 FIN 报文,另一方接收到 FIN 后,会重发 ACK 给被动关闭方, 一来一去正好 2 个 MSL。

可以看到 2MSL时长 这其实是相当于至少允许报文丢失一次。比如,若 ACK 在一个 MSL 内丢失,这样被动方重发的 FIN 会在第 2 个 MSL 内到达,TIME_WAIT 状态的连接可以应对。

为什么不是 4 或者 8 MSL 的时长呢?你可以想象一个丢包率达到百分之一的糟糕网络,连续两次丢包的概率只有万分之一,这个概率实在是太小了,忽略它比解决它更具性价比。

2MSL 的时间是从客户端接收到 FIN 后发送 ACK 开始计时的。如果在 TIME-WAIT 时间内,因为客户端的 ACK 没有传输到服务端,客户端又接收到了服务端重发的 FIN 报文,那么 2MSL 时间将重新计时

TCP 重传、滑动窗口、流量控制、拥塞控制

重传机制

TCP 实现可靠传输的方式之一,是通过序列号与确认应答。

在 TCP 中,当发送端的数据到达接收主机时,接收端主机会返回一个确认应答消息,表示已收到消息。

TCP相关面试题回答_第11张图片

但在错综复杂的网络,并不一定能如上图那么顺利能正常的数据传输,万一数据在传输过程中丢失了呢?

所以 TCP 针对数据包丢失的情况,会用重传机制解决。

接下来说说常见的重传机制:

  • 超时重传
  • 快速重传

超时重传

重传机制的其中一个方式,就是在发送数据时,设定一个定时器,当超过指定的时间后,没有收到对方的 ACK 确认应答报文,就会重发该数据,也就是我们常说的超时重传

TCP 会在以下两种情况发生超时重传:

  • 数据包丢失
  • 确认应答丢失

TCP相关面试题回答_第12张图片

超时时间应该设置为多少呢?

我们先来了解一下什么是 RTT(Round-Trip Time 往返时延),从下图我们就可以知道:

TCP相关面试题回答_第13张图片

RTT 指的是数据发送时刻到接收到确认的时刻的差值,也就是包的往返时间。

超时重传时间是以 RTO (Retransmission Timeout 超时重传时间)表示。

假设在重传的情况下,超时时间 RTO 「较长或较短」时,会发生什么事情呢?

TCP相关面试题回答_第14张图片

上图中有两种超时时间不同的情况:

  • 当超时时间 RTO 较大时,重发就慢,丢了老半天才重发,没有效率,性能差;
  • 当超时时间 RTO 较小时,会导致可能并没有丢就重发,于是重发的就快,会增加网络拥塞,导致更多的超时,更多的超时导致更多的重发。

精确的测量超时时间 RTO 的值是非常重要的,这可让我们的重传机制更高效。

根据上述的两种情况,我们可以得知,超时重传时间 RTO 的值应该略大于报文往返 RTT 的值

TCP相关面试题回答_第15张图片

至此,可能大家觉得超时重传时间 RTO 的值计算,也不是很复杂嘛。

好像就是在发送端发包时记下 t0 ,然后接收端再把这个 ack 回来时再记一个 t1,于是 RTT = t1 – t0。没那么简单,这只是一个采样,不能代表普遍情况

实际上「报文往返 RTT 的值」是经常变化的,因为我们的网络也是时常变化的。也就因为「报文往返 RTT 的值」 是经常波动变化的,

所以「超时重传时间 RTO 的值」应该是一个动态变化的值

滑动窗口与流量控制

引入窗口概念的原因

我们都知道 TCP 是每发送一个数据,都要进行一次确认应答。当上一个数据包收到了应答了, 再发送下一个。

这个模式就有点像我和你面对面聊天,你一句我一句。但这种方式的缺点是效率比较低的。

如果你说完一句话,我在处理其他事情,没有及时回复你,那你不是要干等着我做完其他事情后,我回复你,你才能说下一句话,很显然这不现实。

TCP相关面试题回答_第16张图片

所以,这样的传输方式有一个缺点:数据包的往返时间越长,通信的效率就越低

为解决这个问题,TCP 引入了窗口这个概念。即使在往返时间较长的情况下,它也不会降低网络通信的效率。

那么有了窗口,就可以指定窗口大小,窗口大小就是指无需等待确认应答,而可以继续发送数据的最大值

窗口的实现实际上是操作系统开辟的一个缓存空间,发送方主机在等到确认应答返回之前,必须在缓冲区中保留已发送的数据。如果按期收到确认应答,此时数据就可以从缓存区清除。

假设窗口大小为 3 个 TCP 段,那么发送方就可以「连续发送」 3 个 TCP 段,并且中途若有 ACK 丢失,可以通过「下一个确认应答进行确认」。如下图:

TCP相关面试题回答_第17张图片

图中的 ACK 600 确认应答报文丢失,也没关系,因为可以通过下一个确认应答进行确认,只要发送方收到了 ACK 700 确认应答,就意味着 700 之前的所有数据「接收方」都收到了。这个模式就叫累计确认或者累计应答

窗口大小由哪一方决定?

TCP 头里有一个字段叫 Window,也就是窗口大小。

这个字段是接收端告诉发送端自己还有多少缓冲区可以接收数据。于是发送端就可以根据这个接收端的处理能力来发送数据,而不会导致接收端处理不过来。

所以,通常窗口的大小是由接收方的窗口大小来决定的。

发送方发送的数据大小不能超过接收方的窗口大小,否则接收方就无法正常接收到数据。

发送方的滑动窗口

我们先来看看发送方的窗口,下图就是发送方缓存的数据,根据处理的情况分成四个部分,其中深蓝色方框是发送窗口,紫色方框是可用窗口:

TCP相关面试题回答_第18张图片

  • #1 是已发送并收到 ACK确认的数据:1~31 字节
  • #2 是已发送但未收到 ACK确认的数据:32~45 字节
  • #3 是未发送但总大小在接收方处理范围内(接收方还有空间):46~51字节
  • #4 是未发送但总大小超过接收方处理范围(接收方没有空间):52字节以后

在下图,当发送方把数据「全部」都一下发送出去后,可用窗口的大小就为 0 了,表明可用窗口耗尽,在没收到 ACK 确认之前是无法继续发送数据了。

TCP相关面试题回答_第19张图片

在下图,当收到之前发送的数据 32~36 字节的 ACK 确认应答后,如果发送窗口的大小没有变化,则滑动窗口往右边移动 5 个字节,因为有 5 个字节的数据被应答确认,接下来 52~56 字节又变成了可用窗口,那么后续也就可以发送 52~56 这 5 个字节的数据了。

TCP相关面试题回答_第20张图片

接收方的滑动窗口

接下来我们看看接收方的窗口,接收窗口相对简单一些,根据处理的情况划分成三个部分:

  • #1 + #2 是已成功接收并确认的数据(等待应用进程读取);
  • #3 是未收到数据但可以接收的数据;
  • #4 未收到数据并不可以接收的数据;

TCP相关面试题回答_第21张图片

接收窗口和发送窗口的大小是相等的吗?

并不是完全相等,接收窗口的大小是约等于发送窗口的大小的。

因为滑动窗口并不是一成不变的。比如,当接收方的应用进程读取数据的速度非常快的话,这样的话接收窗口可以很快的就空缺出来。那么新的接收窗口大小,是通过 TCP 报文中的 Windows 字段来告诉发送方。那么这个传输过程是存在时延的,所以接收窗口和发送窗口是约等于的关系。


流量控制

发送方不能无脑的发数据给接收方,要考虑接收方处理能力。

如果一直无脑的发数据给对方,但对方处理不过来,那么就会导致触发重发机制,从而导致网络流量的无端的浪费。

为了解决这种现象发生,TCP 提供一种机制可以让「发送方」根据「接收方」的实际接收能力控制发送的数据量,这就是所谓的流量控制。

TCP的流量控制主要通过滑动窗口机制来实现,数据接收端可根据自己的资源情况,随时动态地调整对方的传输窗口大小。

拥塞控制

为什么要有拥塞控制呀,不是有流量控制了吗?

前面的流量控制是避免「发送方」的数据填满「接收方」的缓存,但是并不知道网络的中发生了什么。

一般来说,计算机网络都处在一个共享的环境。因此也有可能会因为其他主机之间的通信使得网络拥堵。

在网络出现拥堵时,如果继续发送大量数据包,可能会导致数据包时延、丢失等,这时 TCP 就会重传数据,但是一重传就会导致网络的负担更重,于是会导致更大的延迟以及更多的丢包,这个情况就会进入恶性循环被不断地放大....

所以,TCP 不能忽略网络上发生的事,它被设计成一个无私的协议,当网络发送拥塞时,TCP 会自我牺牲,降低发送的数据量。

于是,就有了拥塞控制,控制的目的就是避免「发送方」的数据填满整个网络。

为了在「发送方」调节所要发送数据的量,定义了一个叫做「拥塞窗口」的概念。

什么是拥塞窗口?和发送窗口有什么关系呢?

拥塞窗口 cwnd是发送方维护的一个的状态变量,它会根据网络的拥塞程度动态变化的

我们在前面提到过发送窗口 swnd 和接收窗口 rwnd 是约等于的关系,那么由于加入了拥塞窗口的概念后,此时发送窗口的值是swnd = min(cwnd, rwnd),也就是拥塞窗口和接收窗口中的最小值。

拥塞窗口 cwnd 变化的规则:

  • 只要网络中没有出现拥塞,cwnd 就会增大;
  • 但网络中出现了拥塞,cwnd 就减少;

那么怎么知道当前网络是否出现了拥塞呢?

其实只要「发送方」没有在规定时间内接收到 ACK 应答报文,也就是发生了超时重传,就会认为网络出现了拥塞。

 TCP相关面试题回答_第22张图片

TCP相关面试题回答_第23张图片

当拥塞窗口未达到阈值时,使用慢开始

TCP相关面试题回答_第24张图片

达到阈值时使用拥塞避免,每次窗口大小增加一:

TCP相关面试题回答_第25张图片

 接下来,当重传计时器超时时,我们认为发生了拥塞情况,执行以下操作:

TCP相关面试题回答_第26张图片

接下来继续使用慢启动算法,直到达到阈值,此时继续执行拥塞避免算法:

TCP相关面试题回答_第27张图片

完整过程如图所示:

慢开始不是指增长速度慢,而是一开始的数量少。

TCP相关面试题回答_第28张图片

但是将拥塞窗口重新设置为1,效率比较低下:

TCP相关面试题回答_第29张图片

  • 快重传算法

如下方右图所示,丢失了发送的M3,即使后面发送方一直发送新的,接收方回的确认号也是旧的未接收的报文序号。当发送方受到三个连续的重复确认时,立即重新发丢失的报文。

随后接收方回复确认收到了刚才那个丢失的,接下来回到之前的状态。

TCP相关面试题回答_第30张图片

于是回到之前的那个出现拥塞避免的情况,我们不再是把发送拥塞后,把窗口设置为1,而是执行快恢复算法。

  • 快恢复

TCP相关面试题回答_第31张图片

如图所示:

TCP相关面试题回答_第32张图片

慢启动

TCP 在刚建立连接完成后,首先是有个慢启动的过程,这个慢启动的意思就是一点一点的提高发送数据包的数量,如果一上来就发大量的数据,这不是给网络添堵吗?

慢启动的算法记住一个规则就行:当发送方每收到一个 ACK,拥塞窗口 cwnd 的大小就会加 1。

这里假定拥塞窗口 cwnd 和发送窗口 swnd 相等,下面举个栗子:

  • 连接建立完成后,一开始初始化 cwnd = 1,表示可以传一个 MSS 大小的数据。
  • 当收到一个 ACK 确认应答后,cwnd 增加 1,于是一次能够发送 2 个
  • 当收到 2 个的 ACK 确认应答后, cwnd 增加 2,于是就可以比之前多发2 个,所以这一次能够发送 4 个
  • 当这 4 个的 ACK 确认到来的时候,每个确认 cwnd 增加 1, 4 个确认 cwnd 增加 4,于是就可以比之前多发 4 个,所以这一次能够发送 8 个。

慢启动算法的变化过程如下图:

TCP相关面试题回答_第33张图片

可以看出慢启动算法,发包的个数是指数性的增长

可以看出慢启动算法,发包的个数是指数性的增长

那慢启动涨到什么时候是个头呢?

有一个叫慢启动门限 ssthresh (slow start threshold)状态变量。

  • 当 cwnd < ssthresh 时,使用慢启动算法。
  • 当 cwnd >= ssthresh 时,就会使用「拥塞避免算法」。

#拥塞避免算法

前面说道,当拥塞窗口 cwnd 「超过」慢启动门限 ssthresh 就会进入拥塞避免算法。

一般来说 ssthresh 的大小是 65535 字节。

那么进入拥塞避免算法后,它的规则是:每当收到一个 ACK 时,cwnd 增加 1/cwnd。

接上前面的慢启动的栗子,现假定 ssthresh 为 8

  • 当 8 个 ACK 应答确认到来时,每个确认增加 1/8,8 个 ACK 确认 cwnd 一共增加 1,于是这一次能够发送 9 个 MSS 大小的数据,变成了线性增长。

拥塞避免算法的变化过程如下图:

TCP相关面试题回答_第34张图片

所以,我们可以发现,拥塞避免算法就是将原本慢启动算法的指数增长变成了线性增长,还是增长阶段,但是增长速度缓慢了一些。

就这么一直增长着后,网络就会慢慢进入了拥塞的状况了,于是就会出现丢包现象,这时就需要对丢失的数据包进行重传。

当触发了重传机制,也就进入了「拥塞发生算法」。

拥塞发生

当网络出现拥塞,也就是会发生数据包重传,重传机制主要有两种:

  • 超时重传
  • 快速重传

这两种使用的拥塞发送算法是不同的,接下来分别来说说。

发生超时重传的拥塞发生算法

当发生了「超时重传」,则就会使用拥塞发生算法。

这个时候,ssthresh 和 cwnd 的值会发生变化:

  • ssthresh 设为 cwnd/2
  • cwnd 重置为 1 (是恢复为 cwnd 初始化值,我这里假定 cwnd 初始化值 1)

拥塞发生算法的变化如下图:

TCP相关面试题回答_第35张图片

接着,就重新开始慢启动,慢启动是会突然减少数据流的。这真是一旦「超时重传」,马上回到解放前。但是这种方式太激进了,反应也很强烈,会造成网络卡顿。

就好像本来在秋名山高速漂移着,突然来个紧急刹车,轮胎受得了吗。。。

发生快速重传的拥塞发生算法

还有更好的方式,前面我们讲过「快速重传算法」。当接收方发现丢了一个中间包的时候,发送三次前一个包的 ACK,于是发送端就会快速地重传,不必等待超时再重传。

TCP 认为这种情况不严重,因为大部分没丢,只丢了一小部分,则 ssthresh 和 cwnd 变化如下:

  • cwnd = cwnd/2 ,也就是设置为原来的一半;
  • ssthresh = cwnd;
  • 进入快速恢复算法

快速恢复

快速重传和快速恢复算法一般同时使用,快速恢复算法是认为,你还能收到 3 个重复 ACK 说明网络也不那么糟糕,所以没有必要像 RTO 超时那么强烈。

正如前面所说,进入快速恢复之前,cwnd 和 ssthresh 已被更新了:

  • cwnd = cwnd/2 ,也就是设置为原来的一半;
  • ssthresh = cwnd;

然后,进入快速恢复算法如下:

  • 拥塞窗口 cwnd = ssthresh + 3 ( 3 的意思是确认有 3 个数据包被收到了);
  • 重传丢失的数据包;

面向字节和面向报文?

之所以会说 TCP 是面向字节流的协议,UDP 是面向报文的协议,是因为操作系统对 TCP 和 UDP 协议的发送方的机制不同,也就是问题原因在发送方。

先来说说为什么 UDP 是面向报文的协议?

当用户消息通过 UDP 协议传输时,操作系统不会对消息进行拆分,在组装好 UDP 头部后就交给网络层来处理,所以发出去的 UDP 报文中的数据部分就是完整的用户消息,也就是每个 UDP 报文就是一个用户消息的边界,这样接收方在接收到 UDP 报文后,读一个 UDP 报文就能读取到完整的用户消息。

再来说说为什么 TCP 是面向字节流的协议?

当用户消息通过 TCP 协议传输时,消息可能会被操作系统分组成多个的 TCP 报文,也就是一个完整的用户消息被拆分成多个 TCP 报文进行传输。

这时,接收方的程序如果不知道发送方发送的消息的长度,也就是不知道消息的边界时,是无法读出一个有效的用户消息的,因为用户消息被拆分成多个 TCP 报文后,并不能像 UDP 那样,一个 UDP 报文就能代表一个完整的用户消息。

你可能感兴趣的:(计算机网络,tcp/ip,java,面试)