若该文为原创文章,转载请注明原文出处。
环境搭建参考RK3568笔记一:RKNN开发环境搭建-CSDN博客
部署手写数字识别模型,使用手写数字识别(mnist)数据集训练了一个 LENET 的五层经典网络模型。Lenet是我们的深度学习入门的必学模型,是深度学习领域中的经典卷积神经网络(CNN)架构之一。
过程分为:训练,导出ONNX,转化RKNN,测试
数据集训练我是在AutoDL上训练的,AutoDL配置如下:
conda create -n LeNet5_env python==3.8
Previous PyTorch Versions | PyTorch
根据官方PyTorch,安装pytorch,使用的是CPU版本,其他版本自行安装,安装命令:
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
-i https://pypi.tuna.tsinghua.edu.cn/simple
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
train.py
#!/usr/bin/env python3
import torch
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets , transforms
from torch.utils.data import DataLoader
#import cv2
import numpy as np
from simple_net import SimpleModel
#hyperparameter
BATCH_SIZE = 16
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#DEVICE = torch.device("cuda")
EPOCH = 100
#define training ways
def train_model(model,device,train_loader,optimizer,epoch):
#training
model.train()
for batch_index,(data,target) in enumerate(train_loader):
#deploy to device
data,target =data.to(device),target.to(device)
#init gradient
optimizer.zero_grad()
#training results
output = model(data)
#calulate loss
loss = F.cross_entropy(output,target)
#find the best score's index
#pred = output.max(1,keepdim = True)
#backword
loss.backward()
optimizer.step()
if batch_index % 3000 ==0:
print("Train Epoch :{} \t Loss :{:.6f}".format(epoch,loss.item()))
#test
def test_model(model,device,test_loader):
model.eval()
#correct rate
correct = 0.0
#test loss
test_loss=0
with torch.no_grad(): #do not caculate gradient as well as backward
for data,target in test_loader:
datra,target = data.to(device),target.to(device)
#test data
output = model(data.to(device))
#caculte loss
test_loss += F.cross_entropy(output,target).item()
#find the index of the best score
pred =output.max(1,keepdim=True)[1]
# 累计正确率
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /=len(test_loader.dataset)
print("TEST - average loss : {: .4f}, Accuracy :{:.3f}\n".format(
test_loss,100.0*correct /len(test_loader.dataset)))
def main():
#pipeline
pipeline = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])
#download dataset
train_set = datasets.MNIST("data",train=True,download=False,transform=pipeline)
test_set = datasets.MNIST("data",train=False,download=False,transform=pipeline)
#load dataset
train_loader = DataLoader(train_set,batch_size=BATCH_SIZE,shuffle=True)
test_loader = DataLoader(test_set,batch_size=BATCH_SIZE,shuffle=True)
#show dataset
with open("./data/MNIST/raw/train-images-idx3-ubyte","rb") as f:
file =f.read()
image1 = [int(str(item).encode('ascii'),16) for item in file[16:16+784]]
#print(image1)
image1_np=np.array(image1,dtype=np.uint8).reshape(28,28,1)
#print(image1_np.shape)
#cv2.imwrite("test.jpg",image1_np)
#optim
model = SimpleModel().to(DEVICE)
optimizer = optim.Adam(model.parameters())
#9 recall function to train
for epoch in range(1,EPOCH+1):
train_model(model,DEVICE,train_loader,optimizer,epoch)
test_model(model,DEVICE,test_loader)
# Create a SimpleModel and save its weight in the current directory
model_wzw = SimpleModel()
torch.save(model.state_dict(), "weight.pth")
if __name__ == "__main__":
main()
执行python train.py后开始训练,这里需要注意数据集的路径。
训练结束后,会生成一个weight.pth模型。
export_onnx.py
#!/usr/bin/env python3
import torch
from simple_net import SimpleModel
# Load the pretrained model and export it as onnx
model = SimpleModel()
model.eval()
checkpoint = torch.load("weight.pth", map_location="cpu")
model.load_state_dict(checkpoint)
# Prepare input tensor
input = torch.randn(1, 1, 28, 28, requires_grad=True)#batch size-1 input cahnne-1 image size 28*28
# Export the torch model as onnx
torch.onnx.export(model,
input,
'model.onnx', # name of the exported onnx model
opset_version=12,
export_params=True,
do_constant_folding=True)
这里需要注意的是算子,在rknn2提及。
使用执行上面代码把weight.pth转成onnx模型。
test_onnx.py
#!/usr/bin/env python3
import torch
import onnxruntime
import numpy as np
import cv2
import time
# 加载 ONNX 模型
onnx_model = onnxruntime.InferenceSession("model.onnx", providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'])
num = -1
inference_time =[0]
print("--0-5 1-0 2-4 3-1 4-9 5-2 6-1 7-3 8-1 9-4 for example:if num =9 the pic's num is 4")
# 准备输入数据
#show dataset
with open("./data/MNIST/raw/train-images-idx3-ubyte","rb") as f:
file = f.read()
for i in range(8000):
num = num+1
i = 16+784*num
image1 = [int(str(item).encode('ascii'),16) for item in file[i:i+784]]
#print(image1)
input_data = np.array(image1,dtype=np.float32).reshape(1,1,28,28)
image1_np = np.array(image1,dtype=np.uint8).reshape(28,28,1)
file_name = "test_%d.jpg"%num
#cv2.imwrite(file_name,image1_np)
#print(input_data)
input_name = onnx_model.get_inputs()[0].name
# inference
start_time = time.time()
output = onnx_model.run(None, {input_name: input_data})
end_time = time.time()
inference_time.append(end_time - start_time)
# 处理输出结果
output = torch.tensor(output[0]) # 将输出转换为 PyTorch 张量
#print(output_tensor)
# 输出结果处理和后续操作...
pred =np.argmax(output)
print("------------------------The num of this pic is ", num, pred,"use time ",inference_time[num]*1000,"ms")
mean = (sum(inference_time) / len(inference_time))*1000
print("loop ",num+1,"times","average time",mean,"ms")
执行上面代码,会生成model.onnx模型
训练和导出onnx是在租用的服务器上操作,转成RKNN模型需要在搭建好的虚拟机里操作。
在rknn-toolkit2-master/examples/onnx/目录下新建一个03_RK3568_MNIST文件夹
主要要两个文件model.onnx和test.py,model.onnx为上面导出的模型,test.py代码如下:
test.py
import os
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from rknn.api import RKNN
ONNX_MODEL = 'model.onnx'
RKNN_MODEL = 'model.rknn'
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN()
# pre-process config
print('--> Config model')
rknn.config(target_platform='rk3568')
print('done')
# Load ONNX model
print('--> Loading model')
ret = rknn.load_onnx(model=ONNX_MODEL)
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=False)
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export RKNN model
print('--> Export RKNN model')
ret = rknn.export_rknn(RKNN_MODEL)
if ret != 0:
print('Export resnet50v2.rknn failed!')
exit(ret)
print('done')
# Set inputs
with open("./data/MNIST/raw/train-images-idx3-ubyte","rb") as f:
file=f.read()
num=100
i = 16+784*num
image1 = [int(str(item).encode('ascii'),16) for item in file[i:i+784]]
input_data = np.array(image1,dtype=np.float32).reshape(1,28,28,1)
#save the image
image1_np = np.array(image1,dtype=np.uint8).reshape(28,28,1)
file_name = "test.jpg"
cv2.imwrite(file_name,image1_np)
# init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=input_data)
x = outputs[0]
output = np.exp(x)/np.sum(np.exp(x))
outputs = np.argmax([output])
print("----------outputs----------",outputs)
print('done')
rknn.release()
运行前要先进入conda的虚拟环境
conda activate rknn2_env
激活环境后,运行转换及测试
python test.py
运行结束后,会在当前目录下生成rknn模型,并测试正常。
测试使用的是CPP方式,我直接拷贝了yolov5的一份代码,替换了main.cc文件,重新编译
main.cc放在src里,model放的是模型,其他文件都是正点原子提供的,可以修改,也可以不改
编译后文件在install里
把rknn_mnist_demo和模型上传到开发板,还有数据集./model/data/MNIST/raw/train-images-idx3-ubyte也通过adb方式上传到开发板,运行测试和在上面测试onnx结果是相同的。
main.cc
/*-------------------------------------------
Includes
-------------------------------------------*/
#include
#include
#include
#include
#include
#include
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "rknn_api.h"
using namespace std;
using namespace cv;
const int MODEL_IN_WIDTH = 28;
const int MODEL_IN_HEIGHT = 28;
const int MODEL_CHANNEL = 1;
int ret=0;
int loop_count=8000;
/*-------------------------------------------
Functions
-------------------------------------------*/
static inline int64_t getCurrentTimeUs()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
static void dump_tensor_attr(rknn_tensor_attr* attr) //dump tensor message
{
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
"zp=%d, scale=%f\n",
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}
static unsigned char *load_model(const char *filename, int *model_size) //load model
{
FILE *fp = fopen(filename, "rb");
if(fp == nullptr) {
printf("fopen %s fail!\n", filename);
return NULL;
}
fseek(fp, 0, SEEK_END);
int model_len = ftell(fp);
unsigned char *model = (unsigned char*)malloc(model_len);
fseek(fp, 0, SEEK_SET);
if(model_len != fread(model, 1, model_len, fp)) {
printf("fread %s fail!\n", filename);
free(model);
return NULL;
}
*model_size = model_len;
if(fp) {
fclose(fp);
}
return model;
}
void Bubble_sort(float *buffer)
{
float temp=0;
for(int i = 0; i < 10; i++){
for(int j=0;j<10-i-1;j++){
if(buffer[j]>buffer[j+1]){
temp=buffer[j];
buffer[j]=buffer[j+1];
buffer[j+1]=temp;
}
}
}
}
void Load_data(int num,unsigned char * input_image)
{
int j=16+784*num;
FILE *file = fopen("./model/data/MNIST/raw/train-images-idx3-ubyte", "rb");
if (file == NULL) {
printf("can't open the file!\n");
}
fseek(file,j,SEEK_SET);
fread(input_image,sizeof(char),784,file);
/* for(int i=0;i \n", argv[0]);
return -1;
}
// Load RKNN Model
printf("-------------load rknn model\n");
model = load_model(model_path, &model_len);
ret = rknn_init(&ctx, model, model_len, RKNN_FLAG_COLLECT_PERF_MASK, NULL);
//ret = rknn_init(&ctx, model, model_len, 0, NULL);
if(ret < 0) {
printf("rknn_init fail! ret=%d\n", ret);
return -1;
}
printf("--------------done\n");
// Get Model Input and Output Info
rknn_input_output_num io_num;
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
//get input tensor message
printf("input tensors:\n");
rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, sizeof(input_attrs));
get_tensor_message(ctx,input_attrs,io_num.n_input,1);
//get output tensor message
printf("output tensors:\n");
rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, sizeof(output_attrs));
get_tensor_message(ctx,output_attrs,io_num.n_output,0);
for(int i=0;i= 0) {
rknn_destroy(ctx);
}
if(model) {
free(model);
}
return 0;
}
如有侵权,或需要完整代码,请及时联系博主。