TSNE降维学习

在学习使用Cora数据集时,输入的初始为[2708, 1433], 输入一共有2708个点,每个节点有1433个特征。测试集的大小为[1000, 1433]最后的输出为[1000, 7],表示每个点的类别。
我们要的就是查看这个[1000, 7]的预测结果。想要将他展示在一个平面上是比较困难的,因为平面是2维的。所以需要用TSNE来将[1000, 7]降维至[1000, 2]。

使用过程如下:

# tsne visualize
    # TSNE 用于降维
    tsne = TSNE()
    out = tsne.fit_transform(predict)   # out: [1000, 2]    predict:[1000, 7]
    fig = plt.figure()
    for i in range(7):
        indices = tensor_y == i
        x, y = out[indices].T
        plt.scatter(x, y, label=str(i))

    plt.legend(loc=0)
    plt.savefig('tsne.png')
    plt.show()

你可能感兴趣的:(图神经网络,学习,python,开发语言)