参考引用
- Hello 算法
- Github:hello-algo
/* 选择排序 */
// 时间复杂度:O(n^2)
// 空间复杂度:O(1)
void selectionSort(vector<int> &nums) {
int n = nums.size();
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
swap(nums[i], nums[k]);
}
}
/* 冒泡排序(标志优化)*/
// 时间复杂度:O(n^2),引入 flag 优化后,最佳时间复杂度可达到 O(n)
// 空间复杂度:O(1)
void bubbleSortWithFlag(vector<int> &nums) {
// 外循环:未排序区间为 [0, i],控制冒泡排序的轮数
for (int i = nums.size() - 1; i > 0; i--) {
bool flag = false; // 初始化标志位,用于标志当前轮次是否有元素交换的标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
// 这里使用了 std::swap() 函数
swap(nums[j], nums[j + 1]);
flag = true; // 记录交换元素
}
}
if (!flag)
break; // 此轮冒泡未交换任何元素,即数组已经是有序的,直接跳出
}
}
插入排序的工作原理与手动整理一副牌的过程非常相似。具体来说,在未排序区间选择一个基准元素,将该元素与其左侧已排序区间的元素逐一比较大小,并将该元素插入到正确的位置
下图展示了数组插入元素的操作流程。设基准元素为 base ,需要将从目标索引到 base 之间的所有元素向右移动一位,然后再将 base 赋值给目标索引
/* 插入排序 */
// 时间复杂度:O(n^2),当输入数组完全有序时为 O(n)
// 空间复杂度:O(1)
void insertionSort(vector<int> &nums) {
// 外循环:已排序元素数量为 1, 2, ..., n
for (int i = 1; i < nums.size(); i++) {
int base = nums[i], j = i - 1;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 将 base 赋值到正确位置
}
}
插入排序的时间复杂度为 O(n^2),而快速排序的时间复杂度为 O(nlog n)
实际情况中,插入排序的使用频率显著高于冒泡排序和选择排序
哨兵划分的实质是将一个较长数组的排序问题简化为两个较短数组的排序问题
- 哨兵划分完成后,原数组被划分成三部分:左子数组、基准数、右子数组,且满足 “左子数组任意元素 ≤ 基准数 ≤ 右子数组任意元素”。因此,接下来只需对这两个子数组进行排序
/* 元素交换 */
void swap(vector<int> &nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
/* 哨兵划分 */
int partition(vector<int> &nums, int left, int right) {
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 快速排序 */
// 时间复杂度:O(nlog n),最差情况下 O(n^2)
// 空间复杂度:O(n)
void quickSort(vector<int> &nums, int left, int right) {
// 子数组长度为 1 时终止递归
if (left >= right)
return;
// 哨兵划分
int pivot = partition(nums, left, right);
// 递归左子数组、右子数组
quickSort(nums, left, pivot - 1);
quickSort(nums, pivot + 1, right);
}
快速排序在某些输入下的时间效率可能降低
为避免这种情况发生,可以优化哨兵划分中的基准数的选取策略
/* 选取三个元素的中位数 */
int medianThree(vector<int> &nums, int left, int mid, int right) {
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
return left;
else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))
return mid;
else
return right;
}
/* 哨兵划分(三数取中值) */
int partition(vector<int> &nums, int left, int right) {
// 选取三个候选元素的中位数
int med = medianThree(nums, left, (left + right) / 2, right);
// 将中位数交换至数组最左端
swap(nums, left, med);
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 快速排序(尾递归优化) */
void quickSort(vector<int> &nums, int left, int right) {
// 子数组长度为 1 时终止
while (left < right) {
// 哨兵划分操作
int pivot = partition(nums, left, right);
// 对两个子数组中较短的那个执行快排
if (pivot - left < right - pivot) {
quickSort(nums, left, pivot - 1); // 递归排序左子数组
left = pivot + 1; // 剩余未排序区间为 [pivot + 1, right]
} else {
quickSort(nums, pivot + 1, right); // 递归排序右子数组
right = pivot - 1; // 剩余未排序区间为 [left, pivot - 1]
}
}
}
/* 合并左子数组和右子数组 */
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
void merge(vector<int> &nums, int left, int mid, int right) {
// 初始化辅助数组
vector<int> tmp(nums.begin() + left, nums.begin() + right + 1);
// 左子数组的起始索引和结束索引
int leftStart = left - left, leftEnd = mid - left;
// 右子数组的起始索引和结束索引
int rightStart = mid + 1 - left, rightEnd = right - left;
// i, j 分别指向左子数组、右子数组的首元素
int i = leftStart, j = rightStart;
// 通过覆盖原数组 nums 来合并左子数组和右子数组
for (int k = left; k <= right; k++) {
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if (i > leftEnd)
nums[k] = tmp[j++];
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
else if (j > rightEnd || tmp[i] <= tmp[j])
nums[k] = tmp[i++];
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
else
nums[k] = tmp[j++];
}
}
/* 归并排序 */
// 时间复杂度:O(nlog n)
// 空间复杂度:O(n)
void mergeSort(vector<int> &nums, int left, int right) {
// 终止条件
if (left >= right)
return; // 当子数组长度为 1 时终止递归
// 划分阶段
int mid = (left + right) / 2; // 计算中点
mergeSort(nums, left, mid); // 递归左子数组
mergeSort(nums, mid + 1, right); // 递归右子数组
// 合并阶段
merge(nums, left, mid, right);
}
merge() 函数注意事项
- nums 的待合并区间为 [left, right] ,但由于 tmp 仅复制了 nums 该区间的元素,因此 tmp 对应区间为 [0, right - left]
- 在比较 tmp[i] 和 tmp[j] 的大小时,还需考虑子数组遍历完成后的索引越界问题,即 i > leftEnd 和 j > rightEnd 的情况。索引越界的优先级是最高的,如果左子数组已经被合并完了,那么不需要继续比较,直接合并右子数组元素即可
以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(vector<int> &nums, int n, int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = 2 * i + 1;
int r = 2 * i + 2;
int ma = i;
if (l < n && nums[l] > nums[ma])
ma = l;
if (r < n && nums[r] > nums[ma])
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i) {
break;
}
// 交换两节点
swap(nums[i], nums[ma]);
// 循环向下堆化
i = ma;
}
}
/* 堆排序 */
// 时间复杂度:O(nlog n)
// 空间复杂度:O(1)
void heapSort(vector<int> &nums) {
// 建堆操作:堆化除叶节点以外的其他所有节点
for (int i = nums.size() / 2 - 1; i >= 0; --i) {
siftDown(nums, nums.size(), i);
}
// 从堆中提取最大元素,循环 n-1 轮
for (int i = nums.size() - 1; i > 0; --i) {
// 交换根节点与最右叶节点(即交换首元素与尾元素)
swap(nums[0], nums[i]);
// 以根节点为起点,从顶至底进行堆化
siftDown(nums, i, 0);
}
}
/* 桶排序 */
// 时间复杂度:O(n + k),最差(所有元素被分至同一个桶中)时间复杂度是 O(n^2)
// 空间复杂度:O(n + k)
void bucketSort(vector<float> &nums) {
// 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素
int k = nums.size() / 2;
vector<vector<float>> buckets(k);
// 1. 将数组元素分配到各个桶中
for (float num : nums) {
// 输入数据范围 [0, 1),使用 num * k 映射到索引范围 [0, k-1]
int i = num * k;
// 将 num 添加进桶 bucket_idx
buckets[i].push_back(num);
}
// 2. 对各个桶执行排序
for (vector<float> &bucket : buckets) {
// 使用内置排序函数,也可以替换成其他排序算法
sort(bucket.begin(), bucket.end());
}
// 3. 遍历桶合并结果
int i = 0;
for (vector<float> &bucket : buckets) {
for (float num : bucket) {
nums[i++] = num;
}
}
}