solution:
核心考点是字符串排序。码量较大。
总的情况显然最多有 n m nm nm 种,通过二维散列比较子矩阵可以达到 l o g n + l o g m logn+logm logn+logm ,所以直接暴力枚举 + 比较大小即可。难点在比较大小的方法,我们设 p [ i ] [ j ] = a [ i ] [ j ] ∗ 5 i 3 j p[i][j]=a[i][j]*5^i3^j p[i][j]=a[i][j]∗5i3j , h a s ( i , j , i 2 , j 2 ) = ∑ l 1 = i i 2 ∑ l 2 = j j 2 p [ l 1 ] [ l 2 ] has(i,j,i2,j2)=\sum_{l1=i}^{i2}\sum_{l2=j}^{j2}p[l1][l2] has(i,j,i2,j2)=∑l1=ii2∑l2=jj2p[l1][l2]。这样前缀和可以方便地减去贡献。时间复杂度 O ( n m ( l o g n + l o g m ) ) O(nm(logn+logm)) O(nm(logn+logm)) 。
#include
#include
#include
#include
#define PII pair<int,int>
#define ll long long
#define ull unsigned long long
using namespace std;
const int mx = 2005, P = 5, Q = 3;
int n, m;
char s[mx][mx];
ull p[mx][mx], h[mx][mx];
ull has(int i, int j, int i2, int j2) {
return (h[i + i2][j + j2] - h[i][j + j2] - h[i + i2][j] + h[i][j]);
}
bool equal(int x, int y, int x2, int y2, int x3, int y3) {
return has(x, y, x3, y3) * p[x2][y2] == has(x2, y2, x3, y3) * p[x][y];
}
int main() {
// freopen("data.in","r",stdin);
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++) {
scanf("%s", s[i]);
}
for (int i = 0; i < n << 1; i++) {
for (int j = 0; j < m << 1; j++) {
if (i == 0 && j == 0)
p[i][j] = 1;
else if (j == 0)
p[i][j] = p[i - 1][j] * P;
else {
p[i][j] = p[i][j - 1] * Q;
}
}
}
for (int i = 0; i < n << 1; i++) {
for (int j = 0; j < m << 1; j++) {
h[i + 1][j + 1] = h[i][j + 1] + h[i + 1][j] - h[i][j] + (s[i % n][j % m]=='.') * p[i][j];
}
}
int tx = 0, ty = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (i == 0 && j == 0)
continue;
int l = 1, r = n, res = 0;
while (l <= r) {
int mid = l + r >> 1;
if (equal(tx, ty, i, j, mid, m))
res = mid, l = mid + 1;
else
r = mid - 1;
}
l = 1, r = m;
int res2 = 0;
while (l <= r) {
int mid = l + r >> 1;
if (equal(tx, ty, i, j, res + 1, mid))
res2 = mid, l = mid + 1;
else
r = mid - 1;
}
if (res == n && res2 == m)
continue;
if (s[(i + res) % n][(j + res2) % m] < s[(tx + res) % n][(ty + res2) % m])
tx = i, ty = j;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
printf("%c", s[(i + tx) % n][(j + ty) % m]);
}
printf("\n");
}
}