- kafka的基本使用
柔弱的富po
kafkakafkazookeeper分布式
kafka3.0的基本使用一、kafka基本使用1.启动kafka服务zookeeper+kafka的使用进入kafka/bin目录下./kafka-server-start.sh-daemon../config/server.properties验证是否启动成功:进入到zk中的节点看id是0的broker有没有存在(上线)ls/brokers/idsserver.properties核心配置详解
- Kafka入门使用教程
1.前言1.1.什么是消息队列消息队列(MQ)是消息传递中间件解决方案的一个组件,旨在支持独立的应用和服务之间的信息交换。消息队列按发送顺序存储“消息”(由应用所创建、供其他应用使用的数据包),直到使用方应用能够处理它们为止。这些消息安全地等待接收方应用做好准备,因此,即使网络或接收方应用出现问题,消息队列中的消息也不会丢失。1.2.为什么用消息队列1.2.1.解耦生产者(客户端)发送消息到MQ中
- Paimon对比基于消息队列(如Kafka)的传统实时数仓方案的优势
lifallen
Paimon大数据数据库数据结构java分布式apache数据仓库
弊端:数据重复->优势:Paimon主键表原生去重原方案弊端(Kafka)问题:消息队列(Kafka)是仅支持追加(Append-Only)的日志流。当Flink作业发生故障恢复(Failover)或业务逻辑迭代重跑数据时,同样的数据会被再次写入消息队列,形成重复数据。影响:下游应用(如DWS层、ADS层或直接对接的BI报表)必须自己实现复杂的去重逻辑,这不仅消耗大量计算资源(“资源消耗至少增加一
- Java大厂面试实录:从电商场景到AIGC的深度技术拷问
remCoding
Java场景面试宝典Java面试SpringBootKafkaAI大厂面试微服务
第一轮提问:电商场景与微服务基础面试官:小曾,请描述一个典型的电商秒杀场景,你会如何设计系统架构?涉及哪些关键技术?小曾:秒杀嘛,主要是高并发,我一般会用SpringBoot搭后端,数据库用Redis做缓存,消息队列用Kafka异步处理订单。具体技术细节……呃,好像没细想。面试官(微笑):“不错,Redis和Kafka选得对。那如果用户请求量超10万/QPS,你会如何扩容?SpringCloud的
- Java大厂面试实录:从Spring Boot到AI微服务架构的深度拷问
remCoding
Java场景面试宝典Java面试SpringBootJakartaEEAI微服务KafkaSpringCloudAI面试
第一轮提问:电商场景下的高并发架构面试官:小曾,我们公司电商业务面临“双十一”秒杀场景,需要支持百万级并发,你会如何设计系统架构?请结合SpringCloud和消息队列谈谈方案。小曾:(搓手)额……我会用SpringCloudAlibaba,搞个Nacos做服务注册,网关用Zuul,然后订单服务用SpringBoot+Redis缓存,秒杀请求走消息队列,比如Kafka吧,异步处理,降低峰值压力……
- Java大厂面试实录:从Spring Boot到AI微服务架构的层层递进
remCoding
Java场景面试宝典JavaSpringBootSpringCloudAIKafkaRedisMicroservices
场景:互联网大厂Java后端面试面试官(严肃):请简单介绍下你参与过的项目,主要使用哪些技术栈?小曾(自信):我参与过电商平台的订单系统,用了SpringBoot+SpringCloudAlibaba,数据库是MySQL+Redis缓存,消息队列用Kafka处理异步任务。面试官(点头):不错,能具体说说订单系统如何应对高并发场景的吗?小曾:我们用了HikariCP优化数据库连接池,Redis集群做
- Java大厂面试实录:从Spring Boot到AI微服务架构的深度技术挑战
remCoding
Java场景面试宝典JavaSpringBootSpringCloudAIKafkaRedisDocker
场景:互联网大厂Java后端开发面试面试官(严肃):小曾,请简单介绍下你过往的项目经验,特别是你在微服务架构中解决过哪些技术难题?小曾(自信):我之前参与过电商平台的订单系统重构,将单体应用拆分为SpringCloud微服务架构。我们使用了SpringCloudGateway做网关路由,服务间通过Kafka异步通信,并引入Redis缓存热点数据。面试官:很好,能具体说说你们如何解决订单超卖问题的吗
- 分布式系统中优化ELK日志采集性能
Alex艾力的IT数字空间
elk微服务中间件架构ux安全性测试可用性测试
架构设计、组件调优、资源分配等多维度入手一、架构优化:分布式与解耦设计分层采集与缓冲Filebeat轻量级采集:在每台服务器部署Filebeat替代Logstash作为日志收集器,降低资源占用(CPU/内存减少70%以上)。引入缓冲队列:通过Redis或Kafka作为日志缓冲池,缓解Logstash或Elasticsearch的突发流量压力,避免数据丢失(如Logstash异常时Redis暂存数据
- kafka--基础知识点--0
Chasing__Dreams
kafkakafka分布式
kafka架构https://cloud.tencent.com/developer/article/230789219张图生产者架构消息的磁盘存储文件结构https://cloud.tencent.com/developer/article/230789219张图produce消息分区策略kafka–基础知识点–5–生产者分区策略ISR、OSR、AR是什么?ISR:ISR,全称in-syncre
- Kafka 时间轮深度解析:如何O(1)处理定时任务
lifallen
KafkaJavakafkalinq分布式java数据库数据结构apache
TimingWheel(时间轮)TimingWheel是一种高效的、用于实现大量定时任务调度的算法结构。相比于传统的基于优先队列(PriorityQueue)的定时器(其添加/删除操作的时间复杂度为O(logn)),时间轮可以实现近乎O(1)的添加和删除操作,这在需要管理成千上万个定时任务的场景下(例如Kafka中的请求超时、延迟操作等)具有巨大的性能优势。可以把一个TimingWheel想象成一
- Kafka深度解析:架构、原理与应用实践
JouJz
kafka架构linq
Kafka深度解析:架构、原理与应用实践引言在现代分布式系统架构中,消息队列作为系统解耦、异步通信的核心组件发挥着至关重要的作用。而在众多消息队列解决方案中,ApacheKafka凭借其卓越的性能、高吞吐量和可靠性,已成为企业级数据管道的首选技术。本文将深入剖析Kafka的核心架构、工作原理以及实践应用,帮助开发者全面掌握这一强大的分布式消息系统。一、Kafka概述与核心概念1.1Kafka的诞生
- Java大厂面试实录:谢飞机的电商场景技术问答(Spring Cloud、MyBatis、Redis、Kafka、AI等)
Java大厂面试实录:谢飞机的电商场景技术问答(SpringCloud、MyBatis、Redis、Kafka、AI等)本文模拟知名互联网大厂Java后端岗位面试流程,以电商业务为主线,由严肃面试官与“水货”程序员谢飞机展开有趣的对话,涵盖SpringCloud、MyBatis、Redis、Kafka、SpringSecurity、AI等热门技术栈,并附详细解析,助力求职者备战大厂面试。故事设定谢
- Java大厂面试故事:谢飞机的互联网音视频场景技术面试全纪录(Spring Boot、MyBatis、Kafka、Redis、AI等)
来旺
Java场景面试宝典JavaSpringBootMyBatisKafkaRedis微服务AI
Java大厂面试故事:谢飞机的互联网音视频场景技术面试全纪录(SpringBoot、MyBatis、Kafka、Redis、AI等)互联网大厂技术面试不仅考察技术深度,更注重业务场景与系统设计能力。本篇以严肃面试官与“水货”程序员谢飞机的对话,带你体验音视频业务场景下的Java面试全过程,涵盖主流技术栈,并附详细答案解析,助你面试无忧。故事场景设定谢飞机是一名有趣但技术基础略显薄弱的程序员,这次应
- php 高并发下日志量巨大,如何高效采集、存储、分析
贵哥的编程之路(热爱分享 为后来者)
PHP语言经典程序100题php开发语言
1.问题背景高并发系统每秒产生大量日志(如访问日志、错误日志、业务日志等)。单机写入、存储、分析能力有限,容易成为瓶颈。需要支持实时采集、分布式存储、快速检索与分析。2.主流架构方案一、分布式日志采集架构[应用服务器(PHP等)]|v[日志采集Agent(如Filebeat、Fluentd、Logstash)]|v[消息队列/缓冲(如Kafka、Redis、RabbitMQ)]|v[日志存储(如E
- Kafka系列之:Dead Letter Queue死信队列DLQ
快乐骑行^_^
KafkaKafka系列DeadLetterQueue死信队列DLQ
Kafka系列之:DeadLetterQueue死信队列DLQ一、死信队列二、参数errors.tolerance三、创建死信队列主题四、在启用安全性的情况下使用死信队列更多内容请阅读博主这篇博客:Kafka系列之:KafkaConnect深入探讨-错误处理和死信队列一、死信队列死信队列(DLQ)仅适用于接收器连接器。当一条记录以JSON格式到达接收器连接器时,但接收器连接器配置期望另一种格式,如
- 消息中间件巡检
搬砖小常
消息中间件运维笔记RocketMQkafka中间件巡检运维
除资源使用情况外,消息中间件RocketMQ、kafka还可以巡检哪些?一、RocketMQ巡检1、检查broker写入耗时是否有压力2、检查brokerbusy的数量与频率3、主题发送TPS、发送错误率巡检4、从节点消费情况检查5、集群各broker消息流转情况巡检二、Kafka巡检1、检查是否有分区发生ISR频繁扩张收缩2、检查分区leader选举值是否处于正常水平3、检查controller
- 全面探索Kafka:架构、应用与流处理
Kafka:企业级消息系统与流处理平台的深度解析ApacheKafka作为分布式流处理平台,广泛应用于大数据处理和实时分析领域。本文将基于其官方文档,详细探讨Kafka的核心功能、应用场景以及如何进行有效管理。背景简介Kafka作为高吞吐量的消息系统,支持企业级的发布-订阅模式。它能够处理大量实时数据,并支持高并发读写操作。本文将依据Kafka官方文档的内容,逐层深入,从入门到高级应用,帮助读者全
- 探索实时流处理的未来:Kafka Streams 深度指南
秋或依
探索实时流处理的未来:KafkaStreams深度指南项目介绍欢迎进入KafkaStreams:实时流处理的世界!这不仅仅是一本书,更是一个通往流处理领域深层奥秘的门户。由PrashantPandey编著,这本书以ApacheKafka2.1中的KafkaStreams库为核心,为读者铺就了一条从理解基础概念到熟练掌握KafkaStreams编程的路径。无论是软件工程师、数据架构师,还是对大数据处
- 【Kafka专栏 13】Kafka的消息确认机制:不是所有的“收到”都叫“确认”!
作者名称:夏之以寒作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:夏之以寒-kafka专栏专栏介绍:本专栏旨在以浅显易懂的方式介绍Kafka的基本概念、核心组件和使用场景,一步步构建起消息队列和流处理的知识体系,无论是对分布式系统感兴趣,还是准备在大数据领域迈出第一步,本专栏都提供所需的一切资源、指导,以及相关面试题,立刻免费订阅,开启Kafka学习之旅!
- Kafka系列之:安装具有安全认证的kafka-2.8.2分布式集群
快乐骑行^_^
大数据Kafka系列安全认证kafka-2.8.2分布式集群
Kafka系列之:安装具有安全认证的kafka-2.8.2分布式集群一、下载Zookeeper3.7.1和Kafka2.8.2二、解压Zookeeper3.7.1和Kafka2.8.2三、安装Zookeeper3.7.1详细步骤1.修改zookeeper配置文件2.创建zookeeper数据目录3.zookeeper创建myid4.设置zookeeper访问kafka认证5.拷贝zookeeper
- rdkafka线程过多_我是如何处理大并发量订单处理的 KafKa部署总结
weixin_39574928
rdkafka线程过多
今天要介绍的是消息中间件KafKa,应该说是一个很牛的中间件吧,背靠Apache与很多有名的中间件搭配起来用效果更好哦,为什么不用RabbitMQ,因为公司需要它。网上已经有很多怎么用和用到哪的内容,但结果很多人都倒在了入门第一步环境都搭不起来,可谓是从了解到放弃,所以在此特记录如何在linux环境搭建,windows中配置一样,只是启动运行bat文件。想要用它就先必须了解它能做什么及能做到什么程
- 【Kafka】Failed to send data to Kafka: Expiring 30 record(s) for xxx 732453 ms has passed since last
九师兄
kafkabigdatazookeeper
文章目录1.美图2.背景2.尝试方案13.尝试解决24.场景再现25.场景46.场景57.场景78.场景8M.拓展本文为博主九师兄(QQ:541711153欢迎来探讨技术)原创文章,未经允许博主不允许转载。1.美图问题与【Flink】Flink写入kafka报错FailedtosenddatatoKafka:Expiring4record(s)for20001mshaspassed重复了。2.背景
- 【Flink】flink Kafka报错 : Failed to send data to Kafka: This server is not the leader for that topic-pa
九师兄
flinkkafka大数据
1.背景出现这个问题的背景请参考:【Kafka】FailedtosenddatatoKafka:Expiring30record(s)forxxx732453mshaspassedsincelast[2020-09-0513:16:09
- 【kafka】在Linux系统中部署配置Kafka的详细用法教程分享
景天科技苑
linux基础与进阶shell脚本编写实战kafkalinux分布式kafka安装配置kafka优化
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Python全栈,PyQt5和Tkinter桌面应用开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,云原生K8S,Prometheus监控,数据分析,Django
- C/C++ 使用librdkafka库实现的生产者
InstallingprebuiltpackagesOnMacOSX:brewinstalllibrdkafkaOnDebianandUbuntu:aptinstalllibrdkafka-devOnRedHat,CentOS,Fedora:yuminstalllibrdkafka-develInstallinglibrdkafkausingvcpkg:#Installvcpkgifnotalre
- 使用 Docker 搭建 Python(Flask/CUDA AI)开发环境——AI教你学Docker
使用Docker搭建Python(Flask/CUDAAI)开发环境及常用中间件配置详解本指南适用于用Docker快速搭建Python(FlaskWeb应用或包含CUDA的AI开发环境)开发环境,并集成常用中间件服务如MySQL、Redis、Kafka。适合个人开发、本地测试和小团队协作。一、项目目录结构建议project-root/├──app/#Python应用源码目录│├──Dockerfi
- Kafka如何做到消息不丢失
野老杂谈
全网最全IT公司面试宝典kafka分布式
一、三种消息传递语义(MessageDeliverySemantics):核心是“消息被消费处理的次数”Kafka的三种传递语义本质上描述的是“一条消息从生产到最终被消费者处理完成,可能出现的次数”,这由生产者的消息写入可靠性和消费者的offset提交策略共同决定。1.Atmostonce(最多一次)定义:消息可能丢失,但绝不会被重复处理。触发场景:消费者先提交offset,再处理消息。流程:消费
- 各种消息队列经典问题解决方案——消息丢失、顺序消费、消息积压、重复消费
EyeDropLyq
rabbitmqrocketmqkafka
写在开头:对于消息队列这种中间件来说,只要进入消息队列就会有几个绕不开的问题,比如:消息丢失、顺序消费、消息积压、重复消费,下面就来讲解一下市面上比较常见的各个不同的消息队列产品针对这四个问题的解决方案。1、Kafka消息丢失解决方案对于Kafka这个消息队列来说,消息丢失的环节有下面的几个地方:1、消息生产者发送消息给Broker的时候数据丢失2、Broker异常导致Broker中的数据丢失3、
- Kafka浅学
文文Tao
kafkajava分布式
Kafka应用场景?异步解耦流量消锋Kafka消息队列特点?Kafka吞吐量高:因为他存储数据时,磁盘顺序存储,磁盘的顺序存储速度很快。Kafka持久化消息:这些消息日志可以被重复读取和永久保留可以运行时动态扩展伸缩:Kafka是分布式系统:它以集群的方式运行,早期依赖Zookeeper对于Kafka的作用是什么?Zookeeper是分布式协调服务。Zookeeper作用:用于在Kafka集群中不
- 详解Kafka重平衡机制详解
Kafka的重平衡机制(Rebalance)是确保消费者组内成员动态变化(如新成员加入、现有成员退出或崩溃、订阅主题分区数变化)时,分区所有权能合理、公平地重新分配的核心机制。其目标是保证所有分区都有消费者处理,且负载相对均衡。一、重平衡的触发条件1.消费者加入组:新消费者启动并加入已存在的消费者组。消费者崩溃后重新恢复并重新加入组。2.消费者离开组:消费者主动关闭(发送LeaveGroup请求)
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_