- 树莓派4B arm平台aarch64 pip安装pytorch
纬领网络
pytorcharm深度学习
比如你要安装torch1.7.1的版本,你执行下面这行命令pip3installtorch==1.7.1torchvision==0.8.2torchaudio==0.7.2-fhttps://torch.kmtea.eu/whl/stable-cn.html
- 基于kylin-v10安装docker
神奇侠2024
rediskylin大数据docker
1、下载地址Indexoflinux/static/stable/x86_64/2、下载docker-24.0.5.tgz.tar版本3、上传服务器解压tarxvfdocker-24.0.5.tgz.tar4、解压的docker拷贝或移动到/usr/bin/目录下cpdocker/*/usr/bin/5、编写docker.service文件加入Linux服务当中并开启守护进程vi/etc/syst
- Pybind11教程:从零开始打造 Python 的 C++ 小帮手
Yc9801
c++开发语言
参考官网文档:https://pybind11.readthedocs.io/en/stable/index.html一、Pybind11是什么?想象你在Python里写了个计算器,但跑得太慢,想用C++提速,又不想完全抛弃Python。Pybind11就像一座桥,把C++的高性能代码“嫁接”到Python里。你可以用Python调用C++函数,就像请了个跑得飞快的帮手来干活。主要功能:绑定函数:
- 【Dive Into Stable Diffusion v3.5】1:开源项目正式发布——深入探索SDv3.5模型全参/LoRA/RLHF训练
Donvink
大模型#AIGCstablediffusionAIGC人工智能机器学习深度学习
目录1引言2项目简介3快速上手3.1下载代码3.2环境配置3.3项目结构3.4下载模型与数据集3.5运行指令3.6核心参数说明3.6.1通用参数3.6.2优化器/学习率3.6.3数据相关4结语1引言在人工智能和机器学习领域,生成模型的应用越来越广泛。StableDiffusion作为其中的佼佼者,因其强大的图像生成能力而备受关注。今天,我的开源项目DiveIntoStableDiffusionv3
- 使用fastapi部署stable diffusion模型
明晚十点睡
代码fastapistablediffusionpytorchpython人工智能深度学习计算机视觉
使用vscode运行stablediffusion模型,每次加载模型都需要10+分钟,为算法及prompt调试带来了极大麻烦。使用jupyter解决自然是一个比较好的方案,但如果jupyter由于种种原因不能使用时,fastapi无疑成为了一个很好的选择。参考github链接:https://github.com/jarvislabsai/fastapi-sd-templatefromfastap
- “轻松一键生成 AI 图像:Stable Diffusion Online 带来革命性视觉创意体验!“
ai小精灵
人工智能stablediffusion文心一言AI作画chatgpt
StableDiffusionOnline正在为AI图像生成领域树立新标准,将复杂的功能与便捷直观的用户体验相结合。历史上,StableDiffusion的部署步骤带来了重大挑战,特别是对于技术新手而言。然而,StableDiffusionOnline消除了这些障碍,提供了一个既适合新手也适合资深专业人士的酷炫界面。什么是StableDiffusionOnline?StableDiffusionO
- LORA的魔法棒:在Stable Diffusion中挥洒注意力机制的优化咒语 ??
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
LORA的魔法棒:在StableDiffusion中挥洒注意力机制的优化咒语??欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:DTcode7的博客首页。一个做过前端开发的产品经理,经历过睿智产品的折磨导致脱发之后,励志要翻身农奴把歌唱,一边打入敌人内部一边持续提升自己,为我们广大开发同胞
- Rpm安装Docker
星光落入你灰蒙蒙的眼
Dockerdockerlinux运维容器kubernetes
如果您不能使用Docker的存储库来安装Docker,您可以下载.rpm文件并手动安装。每次要升级Docker引擎时,都需要下载一个新文件。官方文档1、登录https://download.docker.com/linux/centos/并选择您的CentOS版本。然后浏览到x86_64/stable/Packages/,下载您想要安装的Docker版本的.rpm文件#已Centos7.9为例mk
- centos 8 安装docker(RPM离线)——k8s和docker系列
名栩
#容器dockerlinuxcentos
如果无法使用Docker的存储库来安装Docker,可以下载.rpm版本的文件并手动安装。每次要升级DockerEngine时都需要下载一个新文件。前往https://download.docker.com/linux/centos/并选择CentOS版本。然后浏览x86_64/stable/Packages/并下载.rpm要安装的Docker版本的文件。笔记要安装每晚或测试(预发布)包,stab
- Stable Diffusion API /sdapi/v1/txt2img的完整参数列表及其说明
aerror
stablediffusion
基本参数{"prompt":"高质量,精细的恐龙",//主提示词"negative_prompt":"模糊,低质量",//负面提示词"styles":["photorealistic","detailed"],//应用的风格预设"seed":42,//随机种子,-1为随机"subseed":-1,//次级种子"subseed_strength":0.3,//次级种子影响强度(0-1)"seed_r
- 关于stable diffusion的lora训练在linux远程工作站的部署
回天一梦
stablediffusionpython经验分享
在学校Arc中部署loratraining,一大问题就是依赖缺失和冲突。可以利用miniconda或者anaconda建立虚拟环境来解决。安装anaconda或者miniconda(官网上也有教程):wgethttps://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.shchmod+xAnaconda3-5.3.0-Linux-x8
- SD教程 : Stable Diffusion WebUI 云端部署
AI想象家
stablediffusiongptAI作画AIGC人工智能
StableDiffusionWebUI云端部署对于电脑配置无法满足StableDiffusionWebUI部署要求的朋友们,不用担心,我们可以租用GPU进行部署,在对比使用了多个云平台(矩池云/AutoDL/青椒云)之后,我强烈推荐揽睿星舟云平台,原因如下:•新用户注册即送无门槛3.8元优惠券,可免费白嫖2小时3090显卡。(用完重新注册一个号继续白嫖[呲牙])•价格合理,NVIDIA3090搭
- Stable Diffusion 模型具体如何设置参数?
壁纸样机神器
stablediffusion人工智能计算机视觉
基础参数设置随机种子(seed):设置一个固定的随机种子值,可以确保在相同文本提示下生成相同的图像。如果设置为-1,则每次生成的图像都是随机的。num_inference_steps:控制模型推理的步数。步数越多,生成的图像质量通常越高,但生成时间也会相应增加。通常使用默认值50步,如果需要更快的结果可以减少步数,而更高质量的图像则可以适当增加步数。guidance_scale:用于调整生成图像对
- torch.logical_and()方法
CodeWang_NC
pytorch深度学习python
torch.logical_and()计算给定输入张量的元素逻辑AND。零被视为False,非零被视为True官方文档说明:https://pytorch.org/docs/stable/generated/torch.logical_and.html#torch.logical_andtorch.logical_and(input,other,*,out=None)→返回张量input(张量)–
- 利用python 执行统计模型:
渔好学
python
利用python执行统计模型:http://www.statsmodels.org/stable/index.html
- Stable Diffusion/DALL-E 3图像生成优化策略
云端源想
stablediffusion
StableDiffusion的最新版本或社区开发的插件,可以补充这些信息以保持内容的时效性。云端源想1.硬件与部署优化(进阶)显存压缩技术使用--medvram或--lowvram启动参数(StableDiffusionWebUI),通过分层加载模型降低显存占用(适合6GB以下显卡)。分块推理(TiledDiffusion):将图像分割为512×512区块,逐块生成后无缝拼接,支持4096×40
- 【扩散模型Diffusion Model系列】1-一篇文章带你快速入门扩散模型Diffusion Model,个人入门学习路线+优质学习博客资料
Leafing_
DiffusionModel扩散模型人工智能深度学习AIGC扩散模型AI视频生成算法人工智能深度学习
文章目录零、写在前面一、扩散理论缘起DDPM再见,马尔科夫!高视角DDIMLevelup!更高视角SDE、ScoreMatching、ODE走直线!RectifiedFlow和FlowMatching二、模型结构传统派LDMUNet:StableDiffusion维新派MMDiT:StableDiffusion3/Flux三、加速采样多走一步,再比较ConsistencyModel/LCM半白箱采
- Diffusion Transformer与Differential Transformer:技术创新与应用前景
AI大模型learner
深度学习人工智能机器学习
引言Transformer架构已成为自然语言处理(NLP)和计算机视觉(CV)领域的主流技术。随着技术的不断发展,DiffusionTransformer和DifferentialTransformer等新型架构逐步涌现,为生成模型和注意力机制带来了突破性的进展。本文旨在从科学视角探讨这两种模型的核心原理、技术特点及应用前景。DiffusionTransformer概念与原理DiffusionTr
- Stable Diffusion 模型的概念、类型、下载、安装、使用
水滴技术
AI绘画从入门到精通stablediffusionAI作画AIGCpython
本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。大家好,我是水滴~~我们在《StableDiffusionWebUI界面介绍》时,第一个就讲到了StableDiffusion模型,那么这个模型是什么?该从哪儿下载?下载后放到哪儿?该怎么使用呢?本篇文章将围绕着这几个问题来逐一讲述。文章目录一、什么是模型二、大模型的类型2.1基础模型(BaseModel)2.2文件类型三、大模型在哪儿下
- Stable Diffusion游戏底模推荐
Liudef06
从零开始设计游戏stablediffusion游戏
一、基础通用型底模SDXLbase官方原版底模,支持1024x1024高清出图,适用于各类游戏场景和角色的基础生成,建议作为微调训练的基准模型。来源:相关搜索结果写实风格搭配推荐搭配9realisticSDXL或麻袋realistic_XL,增强光影真实感和皮肤细节表现。来源:相关搜索结果二、二次元/动漫风格animagineXLV3_v30专为二次元优化的底模,适合日系动漫角色设计,支持高精度面
- 为什么VAE效果不好,但VAE+diffusion效果就好了?
AndrewHZ
深度学习新浪潮算法计算机视觉深度学习扩散模型VAE生成式模型技术分析
1.什么是VAE?VAE(VariationalAutoencoder,变分自编码器)是一种基于概率生成模型的深度学习框架,主要用于数据生成和潜在空间建模。它结合了自编码器(Autoencoder)的结构和变分推断(VariationalInference)的思想,能够从数据中学习有意义的潜在表示,并生成与训练数据相似的新样本。VAE的核心思想编码-解码结构类似传统自编码器,VAE包含两个部分:编
- 【Pandas】pandas Series repeat
liuweidong0802
PandasSeriespandas
Pandas2.2SeriesComputationsdescriptivestats方法描述Series.argsort([axis,kind,order,stable])用于返回Series中元素排序后的索引位置的方法Series.argmin([axis,skipna])用于返回Series中最小值索引位置的方法Series.argmax([axis,skipna])用于返回Series中最
- (十)Ubuntu 20.04+akiaaa大神 Stable Diffusion整合包 AI绘画教程-外挂VAE模型等快捷设置教程
浪淘沙jkp
stablediffusionAI作画
一、说明我们在运行Stable-Diffusion-webuiclip时初始快捷设置为如图所示我们需要显示“外挂VAE模型”以及“clip终止层数”的快捷设置,我们需要在设置中设置参数二、参数设置依次点击设置---》用户界面---》快捷设置列表然后再下拉菜单中选择这两部居然不行,没有出现想要的效果,后来我后天bashwebui.sh-f了一下下,就可以了看下图
- 【CSDN首发】Stable Diffusion从零到精通学习路线分享
SD入门学习
stablediffusion学习人工智能AIGCmidjourneyAI作画
前言:StableDiffusion(简称SD)作为当前最热门的AI绘画工具之一,凭借其开源免费、可本地部署、功能强大等优势,吸引了大量开发者和艺术创作者的关注。然而,由于其技术门槛较高,许多初学者在入门时常常感到无从下手。本文将为你梳理一条从零基础到精通StableDiffusion的学习路线,帮助你快速掌握这一强大工具。一、StableDiffusion简介与核心原理StableDiffusi
- 本地大模型-使用Open WebUI页面关联Ollama和Stable Diffusion可视化问答及画图/Ollama常用命令
瑶山
AI学习指南pythonOllama本地大模型
目录下载地址安装关联Ollama关联StableDiffusion效果下载地址GitHub-open-webui/open-webui:User-friendlyAIInterface(SupportsOllama,OpenAIAPI,...)安装可以使用docker,安装更方便dockerrun-d-p3450:8080--add-host=host.docker.internal:host-g
- libevent交叉编译
qsqya
c++
libevent交叉编译正常编译解压tarzxvflibevent-2.0.10-stable.tar.gz进入目录cdlibevent-2.0.10-stable设置安装路径./configure--prefix=/usr编译make安装makeinstall坑:默认是安装到/usr/local下的,程序执行时找不到包,可在CmakeLists.txt中修改三方包的路径交叉编译解压tarzxvf
- 基于AI大模型api实现的ChatGPT服务
大牛撸码
人工智能chatgpt
项目简介该项目基于AI大模型api实现的自建后端Chat服务,支出同步响应及流式响应,完美呈现打印机效果。支持一键切换ChatGPT(3.5、4.0)模型、文心一言(支持Stable-Diffusion-XL作图)、通义千问、讯飞星火、智谱清言(ChatGLM)等主流模型,后续模型持续对接中。项目包含java服务端、网页端、移动端及管理后台配置。基于AI大模型api实现的ChatGPT服务,支持一
- CentOS7 yum安装nginx-1.26.1
koseureka
nginx运维
#创建编辑vi/etc/yum.repos.d/nginx.repo#内容[nginx-stable]name=nginxstablerepobaseurl=http://nginx.org/packages/centos/$releasever/$basearch/gpgcheck=1enabled=1gpgkey=https://nginx.org/keys/nginx_signing.key
- 百变背景:万相实验室AIGC电商图片可控生成技术
阿里妈妈技术
AIGC人工智能
✍本文作者:云芑、因尘、岁星、也鹿1.背景随着AI生成内容(AIGC)技术如Diffusion的飞速进展,现如今,大家已能够轻易地使用StableDiffusion(SD)[1]等文生图的模型或工具,将心中所想仅凭语言描述(prompt)即转化为具体图像。基于此,我们不禁思考:是否有可能进一步发展该技术,允许用户通过描述来为商品定制特定背景,从而协助商家快速且轻松地打造理想的商品图像?例如,为一个
- 复现:latent diffusion(LDM)stable diffusion
JokerSZ.
GenerationModelsstablediffusion人工智能深度学习生成模型
复现LDM已解决所有报错下载项目https://github.com/CompVis/latent-diffusion然后运行环境配置:condaenvcreate-fenvironment.yamlcondaactivateldm下载预先训练的权重:下载官方权重文件:mkdir-pmodels/ldm/text2img-large/wget-Omodels/ldm/text2img-large/
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出