location的定义包含以下几种
location [ = | ~ | ~* | ^~ ] uri { ... }
location @name { ... }
=:表示精确匹配,只有请求的url路径与后面的字符串完全相等时,才会命中,不支持location嵌套
~:表示使用正则定义的,区分大小写
~*:表示是使用正则定义的,不区分大小写
^~:表示该符号后面的字符是最佳匹配,采用该规则,不再进行后续的查找
@name:用于定义一个内部 Location 块,该块不能被外部 Client 所访问,只能被 NGINX 内部配置指令所访问,比如 try_files 或者error_page。其修饰的location不能嵌套到其它location,也不能再嵌套其它location,即只能是server这一层的
其是在解析配置文件中的http分配
ctx = ngx_pcalloc(cf->pool, sizeof(ngx_http_conf_ctx_t));
ctx->main_conf = ngx_pcalloc(cf->pool,
sizeof(void *) * ngx_http_max_module);
ctx->srv_conf = ngx_pcalloc(cf->pool, sizeof(void *) * ngx_http_max_module);
ctx->loc_conf = ngx_pcalloc(cf->pool, sizeof(void *) * ngx_http_max_module);
其是在解析配置文件中的http块内location时分配
其中main_conf,srv_conf是延用上一层级的,loc_conf会再一次分配内存(每一层级location会再次分配)
ctx = ngx_pcalloc(cf->pool, sizeof(ngx_http_conf_ctx_t));
pctx = cf->ctx;
ctx->main_conf = pctx->main_conf;
ctx->srv_conf = pctx->srv_conf;
ctx->loc_conf = ngx_pcalloc(cf->pool, sizeof(void *) * ngx_http_max_module);
同时也会遍历模块调用create_loc_conf创建location的配置
for (i = 0; cf->cycle->modules[i]; i++) {
if (cf->cycle->modules[i]->type != NGX_HTTP_MODULE) {
continue;
}
module = cf->cycle->modules[i]->ctx;
if (module->create_loc_conf) {
ctx->loc_conf[cf->cycle->modules[i]->ctx_index] =
module->create_loc_conf(cf);
if (ctx->loc_conf[cf->cycle->modules[i]->ctx_index] == NULL) {
return NGX_CONF_ERROR;
}
}
}
设置http_core_module配置的loc_conf来源
clcf = ctx->loc_conf[ngx_http_core_module.ctx_index];
clcf->loc_conf = ctx->loc_conf;
构造ngx_http_location_queue_t,将当前ngx_http_core_loc_conf_t添加到上一层级ngx_http_core_loc_conf_t中的location队列中。如果是精确匹配,正则,有名或者是无名,构造的ngx_http_location_queue_t的exact来存放ngx_http_core_loc_conf_t配置,否则使用ngx_http_location_queue_t的inclusive来存放ngx_http_core_loc_conf_t配置
if (clcf->exact_match
#if (NGX_PCRE)
|| clcf->regex
#endif
|| clcf->named || clcf->noname)
{
lq->exact = clcf;
lq->inclusive = NULL;
} else {
lq->exact = NULL;
lq->inclusive = clcf;
}
将构造的队列添加到上一层级的队列中
ngx_queue_insert_tail(*locations, &lq->queue);
在ngx_http_block中会分配main_conf
ctx->main_conf = ngx_pcalloc(cf->pool,
sizeof(void *) * ngx_http_max_module);
在处理server时(ngx_http_core_server),当前层的ctx中的main_conf会延用上一层的main_conf
http_ctx = cf->ctx;
ctx->main_conf = http_ctx->main_conf;
将server放入cmcf->server中
cscf = ctx->srv_conf[ngx_http_core_module.ctx_index];
cscf->ctx = ctx;
cmcf = ctx->main_conf[ngx_http_core_module.ctx_index];
cscfp = ngx_array_push(&cmcf->servers);
if (cscfp == NULL) {
return NGX_CONF_ERROR;
}
*cscfp = cscf;
处理ngx_http_core_srv_conf_t中的有名location(named_locations)以及ngx_http_core_loc_conf_t中的正则location(regex_locations),在作割裂之前,会先对ngx_http_core_loc_conf_t中的locations排序,使用的排序规则为ngx_http_cmp_locations,即按照exact(sorted) -> inclusive(sorted) -> regex -> named -> noname的原则进行排序,经过处理后,原先的location队列就只剩下经过排序后的exact以及inclusive类型的location了。这两类location对应配置文件中的定义,就是不含修饰符的location,带有=和^~前缀的location。
将locations queue变成locations list
创建精确匹配location的二叉查找树,使用ngx_queue_middle(其时间度为O(n))得到location_list中的中间位置,如果location_list的元素个数为奇数,则是中间的一个,否则是后半部分的第一个。
ngx_queue_t *
ngx_queue_middle(ngx_queue_t *queue)
{
ngx_queue_t *middle, *next;
middle = ngx_queue_head(queue);
if (middle == ngx_queue_last(queue)) {
return middle;
}
next = ngx_queue_head(queue);
for ( ;; ) {
middle = ngx_queue_next(middle);
next = ngx_queue_next(next);
if (next == ngx_queue_last(queue)) {
return middle;
}
next = ngx_queue_next(next);
if (next == ngx_queue_last(queue)) {
return middle;
}
}
}
使用递归来构建二叉查找树
/*
* to keep cache locality for left leaf nodes, allocate nodes in following
* order: node, left subtree, right subtree, inclusive subtree
*/
static ngx_http_location_tree_node_t *
ngx_http_create_locations_tree(ngx_conf_t *cf, ngx_queue_t *locations,
size_t prefix)
{
size_t len;
ngx_queue_t *q, tail;
ngx_http_location_queue_t *lq;
ngx_http_location_tree_node_t *node;
q = ngx_queue_middle(locations);
lq = (ngx_http_location_queue_t *) q;
len = lq->name->len - prefix;
node = ngx_palloc(cf->pool,
offsetof(ngx_http_location_tree_node_t, name) + len);
if (node == NULL) {
return NULL;
}
node->left = NULL;
node->right = NULL;
node->tree = NULL;
node->exact = lq->exact;
node->inclusive = lq->inclusive;
node->auto_redirect = (u_char) ((lq->exact && lq->exact->auto_redirect)
|| (lq->inclusive && lq->inclusive->auto_redirect));
node->len = (u_short) len;
ngx_memcpy(node->name, &lq->name->data[prefix], len);
ngx_queue_split(locations, q, &tail);
if (ngx_queue_empty(locations)) {
/*
* ngx_queue_split() insures that if left part is empty,
* then right one is empty too
*/
goto inclusive;
}
node->left = ngx_http_create_locations_tree(cf, locations, prefix);
if (node->left == NULL) {
return NULL;
}
ngx_queue_remove(q);
if (ngx_queue_empty(&tail)) {
goto inclusive;
}
node->right = ngx_http_create_locations_tree(cf, &tail, prefix);
if (node->right == NULL) {
return NULL;
}
inclusive:
if (ngx_queue_empty(&lq->list)) {
return node;
}
node->tree = ngx_http_create_locations_tree(cf, &lq->list, prefix + len);
if (node->tree == NULL) {
return NULL;
}
return node;
}
包含11个阶段
枚举 |
名称 |
checker方法 |
NGX_HTTP_POST_READ_PHASE |
在接收到完整的HTTP头部后处理的HTTP阶段 |
ngx_http_core_generic_phase |
NGX_HTTP_SERVER_REWRITE_PHASE |
在将请求的URI与location表达式匹配前, 修改请求的URI(所谓的重定向) 是一个独立的HTTP阶段 |
ngx_http_core_rewrite_phase |
NGX_HTTP_FIND_CONFIG_PHASE |
根据请求的URI寻找匹配的location表达式, 这个阶段只能由ngx_http_core_module模块实现, 不建议其他HTTP模块重新定义这一阶段的行为 |
ngx_http_core_find_config_phase |
NGX_HTTP_REWRITE_PHASE |
在NGX_HTTP_FIND_CONFIG_PHASE阶段寻找到匹配的location之后再修改请求的URI |
ngx_http_core_rewrite_phase |
NGX_HTTP_POST_REWRITE_PHASE |
这一阶段是用于在rewrite重写URL后, 防止错误的 nginx.conf配置导致死循环(递归地修改URI) , 因此, 这一阶段仅由ngx_http_core_module模块处理。 目前, 控制死循环的方式很简单, 首先检查 rewrite的次数, 如果一个请求超过10次重定向 ,就认为进入了rewrite死循环, 这时在 NGX_HTTP_POST_REWRITE_PHASE阶段就会向用户返回500, 表示服务器内部错误 |
ngx_http_core_post_rewrite_phase |
NGX_HTTP_PREACCESS_PHASE |
表示在处理NGX_HTTP_ACCESS_PHASE阶段决定请求的访问权限前HTTP模块可以介入的处理阶段 |
ngx_http_core_generic_phase |
NGX_HTTP_ACCESS_PHASE |
这个阶段用于让HTTP模块判断是否允许这个请求访问 Nginx服务器 |
ngx_http_core_access_phase |
NGX_HTTP_POST_ACCESS_PHASE |
在NGX_HTTP_ACCESS_PHASE阶段中, 当 HTTP模块的handler处理函数返回不允许访问的错误码时(实际就是NGX_HTTP_FORBIDDEN或者 NGX_HTTP_UNAUTHORIZED) , 这里将负责向用户发送拒绝服务的错误响应。 因此, 这个阶段实际上用于给NGX_HTTP_ACCESS_PHASE阶段收尾 |
ngx_http_core_post_access_phase |
NGX_HTTP_PRECONTENT_PHASE |
http请求内容前置处理 |
ngx_http_core_generic_phase |
NGX_HTTP_CONTENT_PHASE |
用于处理HTTP请求内容的阶段, 这是大部分 HTTP模块最愿意介入的阶段 |
ngx_http_core_content_phase |
NGX_HTTP_LOG_PHASE |
处理完请求后记录日志的阶段 |
ngx_http_core_generic_phase |
ngx_http_init_phases初始化以下阶段的handlers
NGX_HTTP_POST_READ_PHASE
NGX_HTTP_SERVER_REWRITE_PHASE
NGX_HTTP_REWRITE_PHASE
NGX_HTTP_PREACCESS_PHASE
NGX_HTTP_ACCESS_PHASE
NGX_HTTP_PRECONTENT_PHASE
NGX_HTTP_CONTENT_PHASE
NGX_HTTP_LOG_PHASE
static ngx_int_t
ngx_http_init_phases(ngx_conf_t *cf, ngx_http_core_main_conf_t *cmcf)
{
if (ngx_array_init(&cmcf->phases[NGX_HTTP_POST_READ_PHASE].handlers,
cf->pool, 1, sizeof(ngx_http_handler_pt))
!= NGX_OK)
{
return NGX_ERROR;
}
if (ngx_array_init(&cmcf->phases[NGX_HTTP_SERVER_REWRITE_PHASE].handlers,
cf->pool, 1, sizeof(ngx_http_handler_pt))
!= NGX_OK)
{
return NGX_ERROR;
}
if (ngx_array_init(&cmcf->phases[NGX_HTTP_REWRITE_PHASE].handlers,
cf->pool, 1, sizeof(ngx_http_handler_pt))
!= NGX_OK)
{
return NGX_ERROR;
}
if (ngx_array_init(&cmcf->phases[NGX_HTTP_PREACCESS_PHASE].handlers,
cf->pool, 1, sizeof(ngx_http_handler_pt))
!= NGX_OK)
{
return NGX_ERROR;
}
if (ngx_array_init(&cmcf->phases[NGX_HTTP_ACCESS_PHASE].handlers,
cf->pool, 2, sizeof(ngx_http_handler_pt))
!= NGX_OK)
{
return NGX_ERROR;
}
if (ngx_array_init(&cmcf->phases[NGX_HTTP_PRECONTENT_PHASE].handlers,
cf->pool, 2, sizeof(ngx_http_handler_pt))
!= NGX_OK)
{
return NGX_ERROR;
}
if (ngx_array_init(&cmcf->phases[NGX_HTTP_CONTENT_PHASE].handlers,
cf->pool, 4, sizeof(ngx_http_handler_pt))
!= NGX_OK)
{
return NGX_ERROR;
}
if (ngx_array_init(&cmcf->phases[NGX_HTTP_LOG_PHASE].handlers,
cf->pool, 1, sizeof(ngx_http_handler_pt))
!= NGX_OK)
{
return NGX_ERROR;
}
return NGX_OK;
}
遍历调用http模块的postconfiguration,用来注册阶段的handler
for (m = 0; cf->cycle->modules[m]; m++) {
if (cf->cycle->modules[m]->type != NGX_HTTP_MODULE) {
continue;
}
module = cf->cycle->modules[m]->ctx;
if (module->postconfiguration) {
if (module->postconfiguration(cf) != NGX_OK) {
return NGX_CONF_ERROR;
}
}
}
将各个不同阶段的handler汇聚成一个处理链表
static ngx_int_t
ngx_http_init_phase_handlers(ngx_conf_t *cf, ngx_http_core_main_conf_t *cmcf)
{
ngx_int_t j;
ngx_uint_t i, n;
ngx_uint_t find_config_index, use_rewrite, use_access;
ngx_http_handler_pt *h;
ngx_http_phase_handler_t *ph;
ngx_http_phase_handler_pt checker;
cmcf->phase_engine.server_rewrite_index = (ngx_uint_t) -1;
cmcf->phase_engine.location_rewrite_index = (ngx_uint_t) -1;
find_config_index = 0;
use_rewrite = cmcf->phases[NGX_HTTP_REWRITE_PHASE].handlers.nelts ? 1 : 0;
use_access = cmcf->phases[NGX_HTTP_ACCESS_PHASE].handlers.nelts ? 1 : 0;
n = 1 /* find config phase */
+ use_rewrite /* post rewrite phase */
+ use_access; /* post access phase */
for (i = 0; i < NGX_HTTP_LOG_PHASE; i++) {
n += cmcf->phases[i].handlers.nelts;
}
ph = ngx_pcalloc(cf->pool,
n * sizeof(ngx_http_phase_handler_t) + sizeof(void *));
if (ph == NULL) {
return NGX_ERROR;
}
cmcf->phase_engine.handlers = ph;
n = 0;
for (i = 0; i < NGX_HTTP_LOG_PHASE; i++) {
h = cmcf->phases[i].handlers.elts;
switch (i) {
case NGX_HTTP_SERVER_REWRITE_PHASE:
if (cmcf->phase_engine.server_rewrite_index == (ngx_uint_t) -1) {
cmcf->phase_engine.server_rewrite_index = n;
}
checker = ngx_http_core_rewrite_phase;
break;
case NGX_HTTP_FIND_CONFIG_PHASE:
find_config_index = n;
ph->checker = ngx_http_core_find_config_phase;
n++;
ph++;
continue;
case NGX_HTTP_REWRITE_PHASE:
if (cmcf->phase_engine.location_rewrite_index == (ngx_uint_t) -1) {
cmcf->phase_engine.location_rewrite_index = n;
}
checker = ngx_http_core_rewrite_phase;
break;
case NGX_HTTP_POST_REWRITE_PHASE:
if (use_rewrite) {
ph->checker = ngx_http_core_post_rewrite_phase;
ph->next = find_config_index;
n++;
ph++;
}
continue;
case NGX_HTTP_ACCESS_PHASE:
checker = ngx_http_core_access_phase;
n++;
break;
case NGX_HTTP_POST_ACCESS_PHASE:
if (use_access) {
ph->checker = ngx_http_core_post_access_phase;
ph->next = n;
ph++;
}
continue;
case NGX_HTTP_CONTENT_PHASE:
checker = ngx_http_core_content_phase;
break;
default:
checker = ngx_http_core_generic_phase;
}
n += cmcf->phases[i].handlers.nelts;
for (j = cmcf->phases[i].handlers.nelts - 1; j >= 0; j--) {
ph->checker = checker;
ph->handler = h[j];
ph->next = n;
ph++;
}
}
return NGX_OK;
}
ngx_http_optimize_servers中的ngx_http_add_listening会设置端口的回调
ls->handler = ngx_http_init_connection;
连接上的读写回调
状态 |
读handler |
写handler |
连接建立后 |
ngx_http_wait_request_handler |
ngx_http_empty_handler |
读取请求行 |
ngx_http_process_request_line |
ngx_http_empty_handler |
读取请求头 |
ngx_http_process_request_headers |
ngx_http_empty_handler |
处理请求 |
ngx_http_request_handler |
ngx_http_request_handler |
http请求的读写回调
状态 |
读handler |
写handler |
业务处理开始 |
ngx_http_block_reading |
ngx_http_core_run_phases |
在处理accept连接事件时,会调用ngx_listening_t的回调handler函数ngx_http_init_connection
对于新分配的连接,如果读事件的ready为1,即iocp或者延时的accept事件,在有使用accept锁情况 下,将事件放入posted_events队列中,否则直接调用事件的回调handler
if (rev->ready) {
/* the deferred accept(), iocp */
if (ngx_use_accept_mutex) {
ngx_post_event(rev, &ngx_posted_events);
return;
}
rev->handler(rev);
return;
}
如果读事件的ready不为1,则将事件加入定时器的红黑树中。定时器超时后,就会调用它的 handler ngx_http_wait_request_handler 函数。
ngx_add_timer(rev, cscf->client_header_timeout);
将连接设置为可重用,因为该连接上还没有请求到来,所以当连接池中的连接不够用时,就可以重用这个连接。将当前connection添加可重用的连接队列中,同时可重用连接数加1
ngx_reusable_connection(c, 1);
void
ngx_reusable_connection(ngx_connection_t *c, ngx_uint_t reusable)
{
ngx_log_debug1(NGX_LOG_DEBUG_CORE, c->log, 0,
"reusable connection: %ui", reusable);
if (c->reusable) {
ngx_queue_remove(&c->queue);
ngx_cycle->reusable_connections_n--;
#if (NGX_STAT_STUB)
(void) ngx_atomic_fetch_add(ngx_stat_waiting, -1);
#endif
}
c->reusable = reusable;
if (reusable) {
/* need cast as ngx_cycle is volatile */
ngx_queue_insert_head(
(ngx_queue_t *) &ngx_cycle->reusable_connections_queue, &c->queue);
ngx_cycle->reusable_connections_n++;
#if (NGX_STAT_STUB)
(void) ngx_atomic_fetch_add(ngx_stat_waiting, 1);
#endif
}
}
ngx_handle_read_event将分配连接的事件添加到事件驱动模块中
ngx_int_t
ngx_handle_read_event(ngx_event_t *rev, ngx_uint_t flags)
{
if (ngx_event_flags & NGX_USE_CLEAR_EVENT) {
/* kqueue, epoll */
if (!rev->active && !rev->ready) {
if (ngx_add_event(rev, NGX_READ_EVENT, NGX_CLEAR_EVENT)
== NGX_ERROR)
{
return NGX_ERROR;
}
}
return NGX_OK;
} else if (ngx_event_flags & NGX_USE_LEVEL_EVENT) {
/* select, poll, /dev/poll */
if (!rev->active && !rev->ready) {
if (ngx_add_event(rev, NGX_READ_EVENT, NGX_LEVEL_EVENT)
== NGX_ERROR)
{
return NGX_ERROR;
}
return NGX_OK;
}
if (rev->active && (rev->ready || (flags & NGX_CLOSE_EVENT))) {
if (ngx_del_event(rev, NGX_READ_EVENT, NGX_LEVEL_EVENT | flags)
== NGX_ERROR)
{
return NGX_ERROR;
}
return NGX_OK;
}
} else if (ngx_event_flags & NGX_USE_EVENTPORT_EVENT) {
/* event ports */
if (!rev->active && !rev->ready) {
if (ngx_add_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
return NGX_ERROR;
}
return NGX_OK;
}
if (rev->oneshot && rev->ready) {
if (ngx_del_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
return NGX_ERROR;
}
return NGX_OK;
}
}
/* iocp */
return NGX_OK;
}
是通过ngx_http_wait_request_handler来处理
首先从网络上读取数据到连接中的buffer
ngx_connection_t *c;
ngx_buf_t *b;
c = rev->data;
b = c->buffer;
if (b == NULL) {
b = ngx_create_temp_buf(c->pool, size);
if (b == NULL) {
ngx_http_close_connection(c);
return;
}
c->buffer = b;
} else if (b->start == NULL) {
b->start = ngx_palloc(c->pool, size);
if (b->start == NULL) {
ngx_http_close_connection(c);
return;
}
b->pos = b->start;
b->last = b->start;
b->end = b->last + size;
}
n = c->recv(c, b->last, size);
b->last += n;
在可重用连接中删除当前连接
ngx_reusable_connection(c, 0);
创建http_request,在创建请求中,会将上面读取的缓冲区放在ngx_http_request_t中的header_in用于处理请求头
c->data = ngx_http_create_request(c);
处理请求头,同时将当前连接读事件的回调函数设置为ngx_http_process_request_line,用于处理单次接收的数据不完整
rev->handler = ngx_http_process_request_line;
ngx_http_process_request_line(rev);
是通过ngx_http_process_request_line来处理的
先解析请求行
rc = ngx_http_parse_request_line(r, r->header_in);
在解析请求行中,状态变换为
在解析请求行中,会有状态sw_http_09表示http的0.9版本
HTTP 0.9 请求行格式: [请求方法][空格..空格][URL](空格..空格)(回车符)[换行符]
HTTP >= 1.0 请求行格式: [请求方法][空格..空格][URL][空格..空格][协议版本][回车符][换行符]
在状态机处理中,会将处理状态放在结构体ngx_http_request_s 的state中
返回值有以下三种情况
NGX_OK:表示成功解析到完整的http请求行
NGX_AGAIN:表示接收到字符流不能构成完整的请求行
NGX_HTTP_PARSE_INVALID_09_METHOD和NGX_HTTP_PARSE_INVALID_REQUEST:表示接收到非法的请求行
当返回NGX_AGAIN时,并且没有可用的内存继续接收字符流时,会调用
rv = ngx_http_alloc_large_header_buffer(r, 1);
分配的大小由large_client_header_buffers来决定
解析完成后,会设置ngx_http_request_t中的request_line, method_name, http_protocol, uri, unparsed_uri, exten, args,schema等
对于http版本号小于1.0的,如果请求头时没有server,会调用ngx_http_set_virtual_server,内部ngx_http_find_virtual_server来找到虚拟主机,后面调用ngx_http_process_request来处理请求。
对于http版本号大于等于1.0的,会初始化请求头列表
if (ngx_list_init(&r->headers_in.headers, r->pool, 20,
sizeof(ngx_table_elt_t))
!= NGX_OK)
{
ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR);
break;
}
调整连接读事件的回调
rev->handler = ngx_http_process_request_headers;
调用ngx_http_process_request_headers开始处理请求头
ngx_http_process_request_headers(rev);
首先检查当前的读事件是否已经超时,检查事件的timeout标志位,如果为1,表示已经超时,调用ngx_http_close_request关闭连接。
if (rev->timedout) {
ngx_log_error(NGX_LOG_INFO, c->log, NGX_ETIMEDOUT, "client timed out");
c->timedout = 1;
ngx_http_close_request(r, NGX_HTTP_REQUEST_TIME_OUT);
return;
}
检查接收http请求头部的header_in缓冲区是否用尽,当pos成员指向了end成员时,表示已经用完,需要分配更大的缓冲区
if (r->header_in->pos == r->header_in->end) {
rv = ngx_http_alloc_large_header_buffer(r, 0);
if (rv == NGX_ERROR) {
ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR);
break;
}
if (rv == NGX_DECLINED) {
p = r->header_name_start;
r->lingering_close = 1;
if (p == NULL) {
ngx_log_error(NGX_LOG_INFO, c->log, 0,
"client sent too large request");
ngx_http_finalize_request(r,
NGX_HTTP_REQUEST_HEADER_TOO_LARGE);
break;
}
len = r->header_in->end - p;
if (len > NGX_MAX_ERROR_STR - 300) {
len = NGX_MAX_ERROR_STR - 300;
}
ngx_log_error(NGX_LOG_INFO, c->log, 0,
"client sent too long header line: \"%*s...\"",
len, r->header_name_start);
ngx_http_finalize_request(r,
NGX_HTTP_REQUEST_HEADER_TOO_LARGE);
break;
}
}
调用ngx_http_parse_header_line来解析请求头,当中也使用了状态机,将解析得到的请求头放到ngx_http_headers_in_t中的headers列表中。
当所有请求头处理完后,会调用ngx_http_process_request_header对请求头信息作一些验证
http版本大于1.0时,请求头中的host不能为空
if (r->headers_in.host == NULL && r->http_version > NGX_HTTP_VERSION_10) {
ngx_log_error(NGX_LOG_INFO, r->connection->log, 0,
"client sent HTTP/1.1 request without \"Host\" header");
ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST);
return NGX_ERROR;
}
请求头中的content_length必须是合法的数字
if (r->headers_in.content_length) {
r->headers_in.content_length_n =
ngx_atoof(r->headers_in.content_length->value.data,
r->headers_in.content_length->value.len);
if (r->headers_in.content_length_n == NGX_ERROR) {
ngx_log_error(NGX_LOG_INFO, r->connection->log, 0,
"client sent invalid \"Content-Length\" header");
ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST);
return NGX_ERROR;
}
}
当使用传输编码时,要求http版本为大于等于1.1, 编码值为chunked时,不能传content_length
if (r->headers_in.transfer_encoding) {
if (r->http_version < NGX_HTTP_VERSION_11) {
ngx_log_error(NGX_LOG_INFO, r->connection->log, 0,
"client sent HTTP/1.0 request with "
"\"Transfer-Encoding\" header");
ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST);
return NGX_ERROR;
}
if (r->headers_in.transfer_encoding->value.len == 7
&& ngx_strncasecmp(r->headers_in.transfer_encoding->value.data,
(u_char *) "chunked", 7) == 0)
{
if (r->headers_in.content_length) {
ngx_log_error(NGX_LOG_INFO, r->connection->log, 0,
"client sent \"Content-Length\" and "
"\"Transfer-Encoding\" headers "
"at the same time");
ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST);
return NGX_ERROR;
}
r->headers_in.chunked = 1;
} else {
ngx_log_error(NGX_LOG_INFO, r->connection->log, 0,
"client sent unknown \"Transfer-Encoding\": \"%V\"",
&r->headers_in.transfer_encoding->value);
ngx_http_finalize_request(r, NGX_HTTP_NOT_IMPLEMENTED);
return NGX_ERROR;
}
}
方法名不能为CONNECT和TRACE
if (r->method == NGX_HTTP_CONNECT) {
ngx_log_error(NGX_LOG_INFO, r->connection->log, 0,
"client sent CONNECT method");
ngx_http_finalize_request(r, NGX_HTTP_NOT_ALLOWED);
return NGX_ERROR;
}
if (r->method == NGX_HTTP_TRACE) {
ngx_log_error(NGX_LOG_INFO, r->connection->log, 0,
"client sent TRACE method");
ngx_http_finalize_request(r, NGX_HTTP_NOT_ALLOWED);
return NGX_ERROR;
}
最后调用ngx_http_process_request来处理请求
由于开始准备调用各Http模块处理请求,不再存在接收http请求头部超时的问题,需要从定时器中将当前连接的读事件移除。检查读事件对应的timer_set标识位,为1表示读事件已经添加到定时器中,需要删除
if (c->read->timer_set) {
ngx_del_timer(c->read);
}
设置连接的读写事件,以及http请求的读事件
c->read->handler = ngx_http_request_handler;
c->write->handler = ngx_http_request_handler;
r->read_event_handler = ngx_http_block_reading;
如果internal标志位为1,则表示请求当前需要做内部跳转,将结构体中的phase_handler序号置为server_rewrite_index,即从NGX_HTTP_SERVER_REWRITE_PHASE阶段开始,否则将phase_handler序号置为0
if (!r->internal) {
switch (r->headers_in.connection_type) {
case 0:
r->keepalive = (r->http_version > NGX_HTTP_VERSION_10);
break;
case NGX_HTTP_CONNECTION_CLOSE:
r->keepalive = 0;
break;
case NGX_HTTP_CONNECTION_KEEP_ALIVE:
r->keepalive = 1;
break;
}
r->lingering_close = (r->headers_in.content_length_n > 0
|| r->headers_in.chunked);
r->phase_handler = 0;
} else {
cmcf = ngx_http_get_module_main_conf(r, ngx_http_core_module);
r->phase_handler = cmcf->phase_engine.server_rewrite_index;
}
设置http请求的写回调为ngx_http_core_run_phases,并且执行ngx_http_core_run_phases
r->write_event_handler = ngx_http_core_run_phases;
ngx_http_core_run_phases(r);
ngx_http_core_run_phases就是执行http处理阶段中设置的phanse_handler
void
ngx_http_core_run_phases(ngx_http_request_t *r)
{
ngx_int_t rc;
ngx_http_phase_handler_t *ph;
ngx_http_core_main_conf_t *cmcf;
cmcf = ngx_http_get_module_main_conf(r, ngx_http_core_module);
ph = cmcf->phase_engine.handlers;
while (ph[r->phase_handler].checker) {
rc = ph[r->phase_handler].checker(r, &ph[r->phase_handler]);
if (rc == NGX_OK) {
return;
}
}
}
在阶段的cheker方法内会调用handler
checker方法返回 NGX_OK时,会将控制权交给nginx的事件模块,当返回非NGX_OK时,向下执行phase_engine中的各处理方法
ngx_http_request_t结构中与子请求有关的成员
post_subrequest:用于子请求的后置处理,即子请求处理结束时的上下文,包含处理回调,其定义为
typedef struct {
ngx_http_post_subrequest_pt handler;//子请求的完成回调
void *data;
} ngx_http_post_subrequest_t;
posted_requests:用来表示主请求包含的子请求链表
postponed:用于表示有嵌套层级的子请求,其结构定义为
struct ngx_http_postponed_request_s {
ngx_http_request_t *request;//第一个子请求
ngx_chain_t *out;
ngx_http_postponed_request_t *next;//用来表示后继子请求
};
subrequest是通过将一个请求拆分成多个子请求来完成整个请求过程
post请求是为了实现subrequest
子请求的设计是通过ngx_http_request_t结构体中的三个成员posted_requests, main和parent来完成。posted_requests的数据类型为ngx_http_posted_request_t,其结构定义为
struct ngx_http_posted_request_s {
ngx_http_request_t *request;//子请求
ngx_http_posted_request_t *next;
};
在创建subrequest时,会设置一些参数,将原始请求即main指向请求的引用计数+1
//ngx_http_subrequest
ngx_http_request_t *sr;
sr = ngx_pcalloc(r->pool, sizeof(ngx_http_request_t));
if (sr == NULL) {
return NGX_ERROR;
}
sr->signature = NGX_HTTP_MODULE;
c = r->connection;
sr->connection = c;
sr->ctx = ngx_pcalloc(r->pool, sizeof(void *) * ngx_http_max_module);
if (sr->ctx == NULL) {
return NGX_ERROR;
}
if (ngx_list_init(&sr->headers_out.headers, r->pool, 20,
sizeof(ngx_table_elt_t))
!= NGX_OK)
{
return NGX_ERROR;
}
if (ngx_list_init(&sr->headers_out.trailers, r->pool, 4,
sizeof(ngx_table_elt_t))
!= NGX_OK)
{
return NGX_ERROR;
}
cscf = ngx_http_get_module_srv_conf(r, ngx_http_core_module);
sr->main_conf = cscf->ctx->main_conf;
sr->srv_conf = cscf->ctx->srv_conf;
sr->loc_conf = cscf->ctx->loc_conf;
sr->pool = r->pool;
sr->headers_in = r->headers_in;
ngx_http_clear_content_length(sr);
ngx_http_clear_accept_ranges(sr);
ngx_http_clear_last_modified(sr);
sr->request_body = r->request_body;
#if (NGX_HTTP_V2)
sr->stream = r->stream;
#endif
sr->method = NGX_HTTP_GET;
sr->http_version = r->http_version;
sr->request_line = r->request_line;
sr->uri = *uri;
if (args) {
sr->args = *args;
sr->subrequest_in_memory = (flags & NGX_HTTP_SUBREQUEST_IN_MEMORY) != 0;
sr->waited = (flags & NGX_HTTP_SUBREQUEST_WAITED) != 0;
sr->background = (flags & NGX_HTTP_SUBREQUEST_BACKGROUND) != 0;
sr->unparsed_uri = r->unparsed_uri;
sr->method_name = ngx_http_core_get_method;
sr->http_protocol = r->http_protocol;
sr->schema = r->schema;
ngx_http_set_exten(sr);
sr->main = r->main;
sr->parent = r;
sr->post_subrequest = ps;
sr->read_event_handler = ngx_http_request_empty_handler;
sr->write_event_handler = ngx_http_handler;
sr->variables = r->variables;
sr->log_handler = r->log_handler;
if (sr->subrequest_in_memory) {
sr->filter_need_in_memory = 1;
}
sr->internal = 1;
sr->discard_body = r->discard_body;
sr->expect_tested = 1;
sr->main_filter_need_in_memory = r->main_filter_need_in_memory;
sr->uri_changes = NGX_HTTP_MAX_URI_CHANGES + 1;
sr->subrequests = r->subrequests - 1;
tp = ngx_timeofday();
sr->start_sec = tp->sec;
sr->start_msec = tp->msec;
r->main->count++;
*psr = sr;
对于需要延时的子请求,是放在请求结构体ngx_http_request_s中的postponed中
if (!sr->background) {
if (c->data == r && r->postponed == NULL) {
c->data = sr;
}
pr = ngx_palloc(r->pool, sizeof(ngx_http_postponed_request_t));
if (pr == NULL) {
return NGX_ERROR;
}
pr->request = sr;
pr->out = NULL;
pr->next = NULL;
if (r->postponed) {
for (p = r->postponed; p->next; p = p->next) { /* void */ }
p->next = pr;
} else {
r->postponed = pr;
}
}
创建posted_request,放在main中的posted_requests链表尾
ngx_int_t
ngx_http_post_request(ngx_http_request_t *r, ngx_http_posted_request_t *pr)
{
ngx_http_posted_request_t **p;
if (pr == NULL) {
pr = ngx_palloc(r->pool, sizeof(ngx_http_posted_request_t));
if (pr == NULL) {
return NGX_ERROR;
}
}
pr->request = r;
pr->next = NULL;
for (p = &r->main->posted_requests; *p; p = &(*p)->next) { /* void */ }
*p = pr;
return NGX_OK;
}
什么时候执行subrequest的回调呢?
是在ngx_http_run_posted_requests中,会遍历主请求中的posted_requests链表,执行对应的write_event_handler回调
void
ngx_http_run_posted_requests(ngx_connection_t *c)
{
ngx_http_request_t *r;
ngx_http_posted_request_t *pr;
for ( ;; ) {
if (c->destroyed) {
return;
}
r = c->data;
pr = r->main->posted_requests;
if (pr == NULL) {
return;
}
r->main->posted_requests = pr->next;
r = pr->request;
ngx_http_set_log_request(c->log, r);
ngx_log_debug2(NGX_LOG_DEBUG_HTTP, c->log, 0,
"http posted request: \"%V?%V\"", &r->uri, &r->args);
r->write_event_handler(r);
}
}
子请求的类型有
NGX_HTTP_SUBREQUEST_IN_MEMORY:不支持嵌套,也是upstream的处理方式
NGX_HTTP_SUBREQUEST_WAITED:如果子请求提前完成,会将子请求的done标识设置为1
NGX_HTTP_SUBREQUEST_BACKGROUND:创建的「后台子请求」不参与响应生产过程,所以并不 需要加入「子请求关系树」。
主要使用数据结构有
ngx_http_request_body_t:请求消息体结构
ngx_chain_t:用于存放消息体的内容,是一个由ngx_buf_t组合的链表
其结构定义为
typedef struct {
ngx_temp_file_t *temp_file;
ngx_chain_t *bufs;
ngx_buf_t *buf;
off_t rest;//消息体剩余未处理的长度
off_t received;
ngx_chain_t *free;//空闲缓冲区链表
ngx_chain_t *busy;//繁忙缓冲区链表
ngx_http_chunked_t *chunked;
ngx_http_client_body_handler_pt post_handler;
unsigned filter_need_buffering:1;
unsigned last_sent:1;
unsigned last_saved:1;//表示是否需要写入文件以及是否已经写入文件
} ngx_http_request_body_t;
struct ngx_chain_s {
ngx_buf_t *buf;
ngx_chain_t *next;
};
消息体的处理入口函数为ngx_http_read_client_request_body
请求消息体的初始化,设置rest为-1,以及读取完成后的后置处理handler
rb = ngx_pcalloc(r->pool, sizeof(ngx_http_request_body_t));
if (rb == NULL) {
rc = NGX_HTTP_INTERNAL_SERVER_ERROR;
goto done;
}
rb->rest = -1;
rb->post_handler = post_handler;
如果之前的http请求中读取的数据还没有处理完,及读取的内容中包含部分消息体的内容,则进入下面逻辑
preread = r->header_in->last - r->header_in->pos;
if (preread) {
/* there is the pre-read part of the request body */
ngx_log_debug1(NGX_LOG_DEBUG_HTTP, r->connection->log, 0,
"http client request body preread %uz", preread);
out.buf = r->header_in;
out.next = NULL;
rc = ngx_http_request_body_filter(r, &out);
if (rc != NGX_OK) {
goto done;
}
r->request_length += preread - (r->header_in->last - r->header_in->pos);
if (!r->headers_in.chunked
&& rb->rest > 0
&& rb->rest <= (off_t) (r->header_in->end - r->header_in->last))
{
/* the whole request body may be placed in r->header_in */
b = ngx_calloc_buf(r->pool);
if (b == NULL) {
rc = NGX_HTTP_INTERNAL_SERVER_ERROR;
goto done;
}
b->temporary = 1;
b->start = r->header_in->pos;
b->pos = r->header_in->pos;
b->last = r->header_in->last;
b->end = r->header_in->end;
rb->buf = b;
r->read_event_handler = ngx_http_read_client_request_body_handler;
r->write_event_handler = ngx_http_request_empty_handler;
rc = ngx_http_do_read_client_request_body(r);
goto done;
}
}
ngx_http_request_body_filter中会区分http流类型,分为两种
chunked类型(ngx_http_request_body_chunked_filter)
请求头中有content-length(ngx_http_request_body_length_filter)
static ngx_int_t
ngx_http_request_body_filter(ngx_http_request_t *r, ngx_chain_t *in)
{
if (r->headers_in.chunked) {
return ngx_http_request_body_chunked_filter(r, in);
} else {
return ngx_http_request_body_length_filter(r, in);
}
}
ngx_http_request_body_length_filter中,会在rest为-1时,重新设置rest
rb->rest = r->headers_in.content_length_n;
然后根据读取的请求体内容,构建ngx_chain_t缓冲区链表out,其中in是根据r->head_in构造的ngx_chain_t,实际只有一个。通过二级指针实现了链表的插入
ngx_chain_t *out,**ll;
out = NULL;
ll = &out;
for (cl = in; cl; cl = cl->next) {
if (rb->rest == 0) {
break;
}
tl = ngx_chain_get_free_buf(r->pool, &rb->free);
if (tl == NULL) {
return NGX_HTTP_INTERNAL_SERVER_ERROR;
}
b = tl->buf;
ngx_memzero(b, sizeof(ngx_buf_t));
b->temporary = 1;
b->tag = (ngx_buf_tag_t) &ngx_http_read_client_request_body;
b->start = cl->buf->pos;
b->pos = cl->buf->pos;
b->last = cl->buf->last;
b->end = cl->buf->end;
b->flush = r->request_body_no_buffering;
size = cl->buf->last - cl->buf->pos;
if ((off_t) size < rb->rest) {
cl->buf->pos = cl->buf->last;
rb->rest -= size;
} else {
cl->buf->pos += (size_t) rb->rest;
rb->rest = 0;
b->last = cl->buf->pos;
b->last_buf = 1;
}
*ll = tl;
ll = &tl->next;
}
调用ngx_http_top_request_body_filter来将消息体内容放到临时文件中,ngx_http_top_request_body_filter是在ngx_http_core_module模块的postconfiguration方法中来初始化的,对应的是ngx_http_request_body_save_filter
static ngx_int_t
ngx_http_core_postconfiguration(ngx_conf_t *cf)
{
ngx_http_top_request_body_filter = ngx_http_request_body_save_filter;
return NGX_OK;
}
将上面生成的out链表放入到消息请求体中的bufs中
ngx_chain_t *cl, *tl, **ll;
ll = &rb->bufs;
//指向最后一个
for (cl = rb->bufs; cl; cl = cl->next) {
ll = &cl->next;
}
for (cl = in; cl; cl = cl->next) {
if (cl->buf->last_buf) {
if (rb->last_saved) {
ngx_log_error(NGX_LOG_ALERT, r->connection->log, 0,
"duplicate last buf in save filter");
*ll = NULL;
return NGX_HTTP_INTERNAL_SERVER_ERROR;
}
rb->last_saved = 1;
}
tl = ngx_alloc_chain_link(r->pool);
if (tl == NULL) {
*ll = NULL;
return NGX_HTTP_INTERNAL_SERVER_ERROR;
}
tl->buf = cl->buf;
*ll = tl;
ll = &tl->next;
}
*ll = NULL;
通过ngx_http_write_request_body将缓冲区链表中的数据写入到临时文件中,当写完文件后,会创建一个ngx_chain_t结构的数据,将其中buf填充,设置in_file标记,file名以及文件最后个位置的偏移
,最后赋值给消息请求体中的bufs
if (rb->temp_file || r->request_body_in_file_only) {
if (rb->bufs && rb->bufs->buf->in_file) {
ngx_log_error(NGX_LOG_ALERT, r->connection->log, 0,
"body already in file");
return NGX_HTTP_INTERNAL_SERVER_ERROR;
}
if (ngx_http_write_request_body(r) != NGX_OK) {
return NGX_HTTP_INTERNAL_SERVER_ERROR;
}
if (rb->temp_file->file.offset != 0) {
cl = ngx_chain_get_free_buf(r->pool, &rb->free);
if (cl == NULL) {
return NGX_HTTP_INTERNAL_SERVER_ERROR;
}
b = cl->buf;
ngx_memzero(b, sizeof(ngx_buf_t));
b->in_file = 1;
b->file_last = rb->temp_file->file.offset;
b->file = &rb->temp_file->file;
rb->bufs = cl;
}
}
另外一种处理消息体的方式是丢弃即ngx_http_discard_request_body
发送消息体主要 涉及到消息头和消息体的处理,nginx抽象出了两个函数接口ngx_http_output_header_filter_pt和ngx_http_output_body_filter_pt,其定义为
typedef ngx_int_t (*ngx_http_output_header_filter_pt)(ngx_http_request_t *r);
typedef ngx_int_t (*ngx_http_output_body_filter_pt)(ngx_http_request_t *r, ngx_chain_t *chain);
对于消息头和消息体的处理,是通过两个链表来处理
其中ngx_http_top_header_filter指向处理消息头链表的头,ngx_http_top_body_filter指向处理消息体链表的头。在每个http子模块中会定义两个静态变量
static ngx_http_output_header_filter_pt ngx_http_next_header_filter;
static ngx_http_output_body_filter_pt ngx_http_next_body_filter;
通过每个模块的postconfiguration来将当前模块的请求头和请求体处理分别添加到两个处理链表中