用idea工具scala 和 Java开发 spark案例:WordCount

目录

一 环境准备

二 scala代码编写

三 java 代码编写


一 环境准备

        创建一个 maven 工程

        添加下列依赖

    
      org.apache.spark
      spark-core_2.12
      ${spark.version}
    
    
      org.apache.spark
      spark-sql_2.12
      ${spark.version}
    
    
      org.apache.spark
      spark-mllib_2.12
      ${spark.version}
    
    
      org.apache.spark
      spark-streaming_2.12
      ${spark.version}
    
    
      org.apache.spark
      spark-graphx_2.12
      ${spark.version}
    
    
      org.apache.spark
      spark-hive_2.12
      ${spark.version}
    
    
      mysql
      mysql-connector-java
      ${mysql.version}
    
    
      com.alibaba
      fastjson
      1.2.62
    

        原本就下载过这些依赖的没必要再下一遍,可以用之前的,比如 json,mysql,mysq 这里版本是 mysql 5 ,不一样的注意修改

        

二 scala代码编写

        首先准备好数据,即一个 txt 文本里面加一些单词,可以放在 hdfs 或本地或其它地方,读取的时候注意改代码,这里是读取 hdfs 上的 txt 文本,注意改成自己的地址

         新建一个 scala 的 object,编写代码:

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}

object WordCountDemo {
  def main(args: Array[String]): Unit = {
    val conf : SparkConf = new SparkConf().setMaster("local[*]").setAppName("wordCount")
    val sc : SparkContext = SparkContext.getOrCreate(conf)

    var spark : SparkSession = SparkSession.builder().config(conf).getOrCreate()

//    val rdd1: RDD[String] = sc.textFile("hdfs://101.200.63.3:9000/kb23/tmp/*.txt")
//    val rdd2: RDD[String] = rdd1.flatMap(x => x.split(" "))
//    val rdd3: RDD[(String, Int)] = rdd2.map(x => (x, 1))
//    val result: RDD[(String, Int)] = rdd3.reduceByKey(_ + _)

    val result2: RDD[(String, Int)] = sc.textFile("hdfs://101.200.63.3:9000/kb23/tmp/*.txt").flatMap(x=>x.split(" ")).map(x=>(x,1)).reduceByKey((x,y)=>x+y)
    //打印到 console
    //    result2.glom().collect.foreach(x=>println(x.toList))
    //保存到 hdfs
    result2.saveAsTextFile("hdfs://101.200.63.3:9000/kb23/sparkoutput/wordcount")
  }

}

        这里稍微解释一下代码中的一些函数:

        map:转换函数,数据集合中每个元素进行一次我们定义的方法

        flatMap: 与map类似,但是映射为0个或多个

        collect:以数组的形式返回数据集中的所有元素 

        glom:将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变。

 

        云服务器的朋友可能有的报错

22/05/0305:48:53 WARN DFSClient: Failed to connect to /10.0.24.10:9866 for block, add to deadNodes and continue. org.apache.hadoop.net.ConnectTimeoutException: 60000 millis timeout while waiting for channel to be ready for connect. ch : java.nio.channels.SocketChannel[connection-pending remote=/10.0.24.10:9866]
org.apache.hadoop.net.ConnectTimeoutException: 60000 millis timeout while waiting for channel to be ready for connect. ch : java.nio.channels.SocketChannel[connection-pending remote=/10.0.24.10:9866]

        出现这种错误看字面意思就很容易明白,这是本地与 datanode 通信时,namenode 给的是 datanode 的内网 ip,所以本地找不到

        解决方法也很简单,设置一下让 namenode 传过来的是服务器名而不是 ip

        在 idea 中,resource 文件夹中添加文件 hdfs-site.xml

        hdfs-site.xml内容:


    
        dfs.client.use.datanode.hostname
        true
        Whether datanodes should use datanode hostnames whenconnecting to other datanodes for data transfer.
        
    

三 java 代码编写

        这里原数据存储在本地,文件名为 input.txt

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

import java.util.Arrays;
import java.util.Map;

public class WordCount {
    public static void main(String[] args) {
        // 创建SparkConf对象
        SparkConf conf = new SparkConf()
                .setAppName("WordCount")
                .setMaster("local");

        // 创建JavaSparkContext对象
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 读取文本文件
        JavaRDD lines = sc.textFile("input.txt");

        // 计算单词出现次数
        JavaRDD words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator());
        JavaRDD filteredWords = words.filter(word -> !word.isEmpty());
        JavaPairRDD wordCounts = filteredWords.mapToPair(word -> new Tuple2<>(word, 1))
                .reduceByKey((x, y) -> x + y);
        Map wordCountsMap = wordCounts.collectAsMap();

        // 输出结果
        for (Map.Entry entry : wordCountsMap.entrySet()) {
            System.out.println(entry.getKey() + ": " + entry.getValue());
        }

        // 关闭JavaSparkContext对象
        sc.close();

    }
}

你可能感兴趣的:(intellij-idea,java,ide,spark,scala)