参考:学好C++需要哪些知识,给大家画了几张图
引用占用内存空间吗?
对引用取地址,其实是取的引用所对应的内存空间的地址。这个现象让人觉得引用好像并非一个实体。但是引用是占用内存空间的,而且其占用的内存和指针一样,因为引用的内部实现就是通过指针来完成的。
结构体:将不同类型的数据组合成一个整体,是自定义类型
共同体:不同类型的几个变量共同占用一段内存
结构体为什么要内存对齐呢?
new操作针对数据类型的处理,分为两种情况:
delete也分为两种情况:
与 malloc 和 free 的区别:
既然有了malloc/free,C++中为什么还需要new/delete呢?
运算符是语言自身的特性,有固定的语义,编译器知道意味着什么,由编译器解释语义,生成相应的代码。库函数是依赖于库的,一定程度上独立于语言的。编译器不关心库函数的作用,只保证编译,调用函数参数和返回值符合语法,生成call函数的代码。
对于非内部数据类型而言,光用malloc/free无法满足动态对象都要求。new/delete是运算符,编译器保证调用构造和析构函数对对象进行初始化/析构。但是库函数malloc/free是库函数,不会执行构造/析构。
delete只会调用一次析构函数,而delete[]会调用每个成员的析构函数
用new分配的内存用delete释放,用new[]分配的内存用delete[]释放
const修饰类的成员变量,表示常量不可能被修改
const修饰类的成员函数,表示该函数不会修改类中的数据成员,不会调用其他非const的成员函数
const函数只能调用const函数,非const函数可以调用const函数
C++内存区域中堆和栈的区别:
管理方式不同:栈是由编译器自动管理,无需我们手工控制;对于堆来说,释放由程序员完成,容易产生内存泄漏。
空间大小不同:一般来讲,在32为系统下面,堆内存可达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定空间大小的,例如,在vc6下面,默认的栈大小好像是1M。当然,也可以自己修改:打开工程。 project–>setting–>link,在category中选中output,然后再reserve中设定堆栈的最大值和 commit。
能否产生碎片:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题。
生长方向不同:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方式是向下的,是向着内存地址减小的方向增长。
分配方式不同:堆都是动态分配的;栈静态分配由编译器完成,比如局部变量的分配
分配效率不同:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是c/c++库函数提供的,机制很复杂。库函数会按照一定的算法进行分配。显然,堆的效率比栈要低得多。
进程内存中的映像,主要有代码区,堆(动态存储区,new/delete的动态数据),栈,静态存储区
堆和自由存储区的区别?
总的来说,堆是C语言和操作系统的术语,是操作系统维护的一块动态分配内存;自由存储是C++中通过new与delete动态分配和释放对象的抽象概念。他们并不是完全一样。
从技术上来说,堆(heap)是C语言和操作系统的术语。堆是操作系统所维护的一块特殊内存,它提供了动态分配的功能,当运行程序调用malloc()时就会从中分配,稍后调用free可把内存交还。而自由存储是C++中通过new和delete动态分配和释放对象的抽象概念,通过new来申请的内存区域可称为自由存储区。基本上,所有的C++编译器默认使用堆来实现自由存储,也即是缺省的全局运算符new和delete也许会按照malloc和free的方式来被实现,这时藉由new运算符分配的对象,说它在堆上也对,说它在自由存储区上也正确。
扩展: 堆和栈的区别(转过无数次的文章)
前者是从标准库路径寻找
后者是从当前工作路径
动态分配内存所开辟的空间,在使用完毕后未手动释放,导致一直占据该内存,即为内存泄漏。
方法:malloc/free要配套,对指针赋值的时候应该注意被赋值的指针是否需要释放;使用的时候记得指针的长度,防止越界
为变量分配地址和存储空间的称为定义,不分配地址的称为声明。一个变量可以在多个地方声明,但是只在一个地方定义。
加入 extern 修饰的是变量的声明,说明此变量将在文件以外或在文件后面部分定义。说明:很多时候一个变量,只是声明不分配内存空间,直到具体使用时才初始化,分配内存空间,如外部变量。
在C++中,内存被分成五个区:栈、堆、自由存储区、静态存储区、常量区
栈:存放函数的参数和局部变量,编译器自动分配和释放
堆:new关键字动态分配的内存,由程序员手动进行释放,否则程序结束后,由操作系统自动进行回收
自由存储区:new所申请的内存则是在自由存储区上,使用delete来释放。
全局/静态存储区:存放全局变量和静态变量
常量区:存放常量,不允许被修改
类型转化机制可以分为隐式类型转换和显示类型转化(强制类型转换)
(new-type) expression
new-type (expression)
隐式类型转换比较常见,在混合类型表达式中经常发生;四种强制类型转换操作符:
static_cast、dynamic_cast、const_cast、reinterpret_cast
①用于类层次结构中基类(父类)和派生类(子类)之间指针或引用的转换。不管是否发生多态,父子之间互转时,编译器都不会报错。
②用于基本数据类型之间的转换,如把int转换成char,把int转换成enum。这种转换的安全性也要开发人员来保证。
③把空指针转换成目标类型的空指针。
④把任何指针类型转换成空指针类型。
⑤可以对普通数据的const和non_const进行转换,但不能对普通数据取地址后的指针进行const添加和消去。
⑥无继承关系的自定义类型,不可转换,不支持类间交叉转换。
另外,static_cast不能转换掉原有类型的const、volatile、或者 __unaligned属性。(前两种可以使用const_cast 来去除)。
2. dynamic_cast:运行时的检查
动态转换的类型和操作数必须是完整类类型或空指针、空引用,说人话就是说,只能用于类间转换,支持类间交叉转换,不能操作普通数据。
主要用于类层次结构中基类(父类)和派生类(子类)之间指针或引用的转换,
①进行上行转换(把派生类的指针或引用转换成基类表示)是安全的,允许转换;
②进行下行转换(把基类指针或引用转换成派生类表示)时,由于没有动态类型检查,所以是不安全的,不允许转化,编译器会报错;
③发生多态时,允许互相转换。
④无继承关系的类之间也可以相互转换,类之间的交叉转换。
⑤如果dynamic_cast语句的转换目标是指针类型并且失败了,则结果为0。如果转换目标是引用类型并且失败了,则dynamic_cast运算符将抛出一个std::bad_cast异常
3. const_cast
const_cast用于强制去掉不能被修改的常数特性,其去除常量性的对象一般为指针或引用。
4. reinterpret_cast
在C++语言中,reinterpret_cast主要有几种强制转换用途:将指针或引用转换为一个足够长度的整型、将整型转换为指针或引用类型。
更详细见 C++的四种强制转换
5. 为什么不使用C的强制转换 ?
C的强制转换表面上看起来功能强大什么都能转,但是转化不够明确,不能进行错误检查,容易出错。
extern "C"的主要作用就是为了能够正确实现C++代码调用其他C语言代码。加上extern "C"后,会指示编译器这部分代码按C语言的进行编译,而不是C++的。
#define是预处理命令,在预处理是执行简单的替换,不做正确性的检查
typedef是在编译时处理的,它是在自己的作用域内给已经存在的类型一个别名
typedef (int*) pINT;
#define pINT2 int*
效果相同?实则不同!实践中见差别:pINT a,b;的效果同int *a; int *b;表示定义了两个整型指针变量。而pINT2 a,b;的效果同int *a, b;表示定义了一个整型指针变量a和整型变量b。
对比值传递,引用传参的好处:
但是有以下的限制:
野指针不是NULL指针,是未初始化或者未清零的指针,它指向的内存地址不是程序员所期望的,可能指向了受限的内存。
成因:
内存泄漏是指动态分配的堆内存由于某种原因程序未释放或无法释放,造成系统内存的浪费,导致程序运行速度减慢甚至系统崩溃等严重后果。
栈溢出是指函数中的局部变量造成的溢出(注:函数中形参和函数中的局部变量存放在栈上)
栈的大小通常是1M-2M,所以栈溢出包含两种情况,一是分配的的大小超过栈的最大值,二是分配的大小没有超过最大值,但是接收的buf比原buf小。
解决办法大致说来也有两种:
不是很严谨的来说,左值指的是既能够出现在等号左边也能出现在等号右边的变量(或表达式),右值指的则是只能出现在等号右边的变量(或表达式)。举例来说我们定义的变量 a 就是一个左值,而malloc返回的就是一个右值。或者左值就是在程序中能够寻址的东西,右值就是一个具体的真实的值或者对象,没法取到它的地址的东西(不完全准确),因此没法对右值进行赋值,但是右值并非是不可修改的,比如自己定义的class, 可以通过它的成员函数来修改右值。
归纳一下就是:
可以取地址的,有名字的,非临时的就是左值
不能取地址的,没有名字的,临时的,通常生命周期就在某个表达式之内的就是右值
但是到了 C++11 之后概念变的略微复杂,引入了 lvalue, glvalue, rvalue, xvalue 和 prvalue。
左值引用就是我们通常所说的引用,如下所示。左值引用通常可以看作是变量的别名。
type-id & cast-expression
// demo
int a = 10
int &b = a
int &c = 10 // 错误,无法对一个立即数做引用
const int &d = 10 // 正确, 常引用引用常数量是ok的,其等价于 const int temp = 10; const int &d = temp
右值引用是 C++11 新增的特性,其形式如下所示。右值引用用来绑定到右值,绑定到右值以后本来会被销毁的右值的生存期会延长至与绑定到它的右值引用的生存期。
type-id && cast-expression
// demo
int &&var = 10; // ok
int a = 10
int &&b = a // 错误, a 为左值
int &&c = var // 错误,var 为左值
int &&d = move(a) // ok, 通过move得到左值的右值引用
在汇编层面右值引用做的事情和常引用是相同的,即产生临时量来存储常量。但是,唯一 一点的区别是,右值引用可以进行读写操作,而常引用只能进行读操作。
相同点: 它们的作用是防止头文件被重复包含。
不同点:
数组指针,是指向数组的指针,而指针数组则是指该数组的元素均为指针。
类型名 (*数组标识符)[数组长度]
类型名 *数组标识符[数组长度]
不是。两个不同类型的指针之间可以强制转换
全局对象的构造函数会在main函数之前执行。
生命周期不同:
全局变量随主程序创建和创建,随主程序销毁而销毁;局部变量在局部函数内部,甚至局部循环体等内部存在,退出就不存在;
使用方式不同:
通过声明后全局变量程序的各个部分都可以用到;局部变量只能在局部使用;分配在栈区。
内存分配位置不同:
全局变量分配在全局数据段并且在程序开始运行的时候被加载。局部变量则分配在堆栈里面 。
答:sizeof计算的是在栈中分配的内存大小。
函数调用是有时间和空间开销的。程序在执行一个函数之前需要做一些准备工作,要将实参、局部变量、返回地址以及若干寄存器都压入栈中,然后才能执行函数体中的代码;函数体中的代码执行完毕后还要清理现场,将之前压入栈中的数据都出栈,才能接着执行函数调用位置以后的代码。如果函数体代码比较多,需要较长的执行时间,那么函数调用机制占用的时间可以忽略;如果函数只有一两条语句,那么大部分的时间都会花费在函数调用机制上,这种时间开销就就不容忽视。
为了消除函数调用的时空开销,C++ 提供一种提高效率的方法,即在编译时将函数调用处用函数体替换,类似于C语言中的宏展开。这种在函数调用处直接嵌入函数体的函数称为内联函数(Inline Function),又称内嵌函数或者内置函数。
详见: C++ inline内联函数详解
C对象有4种存储期:静态存储期、线程存储期、自动存储期、动态分配存储期。
详见: C/C++的存储期
在程序中,流操作符>>和<<经常连续使用。因此这两个操作符的返回值应该是一个仍旧支持这两个操作符的流引用。其他的数据类型都无法做到这一点。
注意:除了在赋值操作符和流操作符之外的其他的一些操作符中,如+、-、*、/等却千万不能返回引用。因为这四个操作符的对象都是右值,因此,它们必须构造一个对象作为返回值。
操作系统和编译器通过内存分配的位置来知道的,全局变量分配在全局数据段并且在程序开始运行的时候被加载。局部变量则分配在堆栈里面 。
Object Oriented Programming, 面向对象是一种对现实世界理解和抽象的方法、思想,通过将需求要素转化为对象进行问题处理的一种思想。其核心思想是数据抽象(封装)、继承和动态绑定(多态)。
面向对象的意义在于:将日常生活中习惯的思维方式引入程序设计中;将需求中的概念直观的映射到解决方案中;以模块为中心构建可复用的软件系统;提高软件产品的可维护性和可扩展性。
封装:
封装是实现面向对象程序设计的第一步,封装就是将数据或函数等集合在一个个的单元中(我们称之为类)。
封装的意义在于保护或者防止代码(数据)被我们无意中破坏。
从封装的角度看,public, private 和 protected 属性的特点如下。
继承:
继承主要实现重用代码,节省开发时间。
子类可以继承父类的一些东西。
多态:
多态是指通过基类的指针或者引用,在运行时动态调用实际绑定对象函数的行为。与之相对应的编译时绑定函数称为静态绑定。多态是设计模式的基础,多态是框架的基础。
C++静态多态与动态多态
构造函数:
析构函数
对于栈对象或者全局对象,调用顺序与构造函数的调用顺序刚好相反,也即后构造的先析构。对于堆对象,析构顺序与delete的顺序相关。
每一个含有虚函数的类都至少有有一个与之对应的虚函数表,其中存放着该类所有虚函数对应的函数指针(地址),
类的示例对象不包含虚函数表,只有虚指针;
派生类会生成一个兼容基类的虚函数表。
阅读: C++虚函数及虚函数表解析
对于 class A,它的拷贝构造函数如下:
A::A(const A &a){}
只有当参数是当前类的引用时,才不会导致再次调用拷贝构造函数,这不仅是逻辑上的要求,也是 C++ 语法的要求。
另外一个原因是,添加 const 限制后,可以将 const 对象和非 const 对象传递给形参了,因为非 const 类型可以转换为 const 类型。如果没有 const 限制,就不能将 const 对象传递给形参,因为 const 类型不能直接转换为非 const 类型,这就意味着,不能使用 const 对象来初始化当前对象了。
静态绑定和动态绑定是C++多态性的一种特性
深拷贝和浅拷贝可以简单的理解为:如果一个类拥有资源,当这个类的对象发生复制过程的时候,如果资源重新分配了就是深拷贝;反之没有重新分配资源,就是浅拷贝。
系统自动生成的构造函数:普通构造函数和拷贝构造函数 (在没有定义对应的构造函数的时候)
生成一个实例化的对象会调用一次普通构造函数,而用一个对象去实例化一个新的对象所调用的就是拷贝构造函数
调用拷贝构造函数的情形:
注 :当类中有指针类型的成员变量时,一定要重写拷贝构造函数和赋值运算符 ,不要使用默认的。
答:默认构造函数、析构函数、复制构造函数、赋值函数
答:不行。首先,虚函数是有代价的,由于每个虚函数的对象都要维护一个虚函数表,因此在使用虚函数的时候都会产生一定的系统开销,这是没有必要的。
构造函数、析构函数、虚函数可以声明为内联函数,这在语法上是正确的。
编译器并不真正对声明为inline的构造和析构函数内联,因为编译器会在构造和析构函数中添加额外的操作(申请/释放内存,构造/析构对象,调用基类成员对象构造函数等),致使构造函数/析构函数并不像看上去的那么精简。
inline是编译期决定的,而虚函数是运行期决定的,即在不知道将要调用哪个函数的情况下,如何将函数内联。
注意:有些书上只是简单的介绍了前四个函数。没有提及后面这两个函数。但后面这两个函数也是空类的默认函数。另外需要注意的是,只有当实际使用这些函数的时候,编译器才会去定义它们。
C++ 11 中的智能指针有:shared_ptr, unique_ptr 和 weak_ptr。
shared_ptr 的引用计数是存放在堆上的,多个 shared_ptr 的对象的引用计数都指向同一个堆地址。
unique_ptr 中拷贝构造函数和赋值操作符都声明为delete或private。
优先使用 make_shared 和 make_unique 的原因是为了避免内存泄露。参考 C++11 中的 Smart Pointer(shared_ptr/weak_ptr/unique_ptr) 总结
智能指针使用注意事项:
不使用相同的内置指针值初始化,或reset多个智能指针
不delete get()返回的指针
不使用get()初始化或reset另一个智能指针
get()返回的智能指针可能变成dangling pointer
如果智能指针管理的内存不是new出来的,需要提供删除器
拓展问题
shared_ptr 是否线程安全?
侵入式智能指针?
从源码理解智能指针(二)—— shared_ptr、weak_ptr
weak_ptr只是提供了对管理对象的一个访问手段。weak_ptr 设计的目的是为配合 shared_ptr 而引入的一种智能指针来协助 shared_ptr 工作, 它只可以从一个 shared_ptr 或另一个 weak_ptr 对象构造, 它的构造和析构不会引起引用记数的增加或减少。weak_ptr是用来解决shared_ptr相互引用时的死锁问题,如果说两个shared_ptr相互引用,那么这两个指针的引用计数永远不可能下降为0,资源永远不会释放。它是对对象的一种弱引用,不会增加对象的引用计数,和shared_ptr之间可以相互转化,shared_ptr可以直接赋值给它,它可以通过调用lock函数来获得shared_ptr。
引用计数原理
shared_ptr的实现是这样的: shared_ptr模板类有一个__shared_count类型的成员_M_refcount来处理引用计数的问题。__shared_count也是一个模板类,它的内部有一个指向Sp_counted_base_impl类型的指针_M_pi。所有引用同一个对象的shared_ptr都共用一个_M_pi指针。
当我们谈论shared_ptr的线程安全性时,我们在谈论什么
闭包:与函数A调用函数B相比较,闭包中函数A调用函数B,可以不通过函数A给函数B传递函数参数,而使函数B可以访问函数A的上下文环境才可见(函数A可直接访问到)的变量;
c++11提供的闭包方式:lambda、function、bind
引用百度上对闭包的定义:闭包是指可以包含自由(未绑定到特定对象)变量的代码块;这些变量不是在这个代码块内或者任何全局上下文中定义的,而是在定义代码块的环境中定义(局部变量)。“闭包” 一词来源于以下两者的结合:要执行的代码块(由于自由变量被包含在代码块中,这些自由变量以及它们引用的对象没有被释放)和为自由变量提供绑定的计算环境(作用域)。
详见: c++11的闭包(lambda、function、bind)
C++11捕获外部变量总结
捕获形式 | 说明 |
---|---|
[] | 不捕获任何外部变量 |
[变量名, …] | 默认以值得形式捕获指定的多个外部变量(用逗号分隔),如果引用捕获,需要显示声明(使用&说明符) |
[this] | 以值的形式捕获this指针 |
[=] | 以值的形式捕获所有外部变量 |
[&] | 以引用形式捕获所有外部变量 |
[=, &x] | 变量x以引用形式捕获,其余变量以传值形式捕获 |
[&, x] | 变量x以值的形式捕获,其余变量以引用形式捕获 |
很多语言都有对内存自动管理,即所谓的垃圾回收机制。所谓垃圾,指的是那些不再使用或者没有任何指针指向的内存空间,而“回收”则指的是将这些“垃圾”收集起来以便再次利用。C++采用 unique_ptr、shared_ptr 以及 weak_ptr 这 3 个智能指针来实现堆内存的自动回收。来实现自动释放分配的内存。
C++之智能指针(C++的垃圾回收机制)
C++标准明确指出不管是序列容器(⽐如vector)还是关联容器(⽐如unordered_map)其
clear()成员函数都是线性时间复杂度O(n)的。因为只要执⾏了clear()就需要对其存储的元素调⽤析构函数 ,这个析构操作显然是逐个析构的。因⽽时间复杂度是O(n)。
当然在实践中,也有个例。⽐如当vector存储基本数据类型或POD类型(⽐如基本数据类型构成的struct)的时候,由于其元素类型没有析构函数(也不需要析构函数),加之vector内部连续存储的特性,编译器的实现是可以在常量时间完成clear()的。
仅限于vector存储基本数据类型和POD类型的时候,编译器可能有此优化。如果vector存储的
是其他类型的对象,或者是其他容器(⽐如list、map、unordered_map)都是没办法做这个优化的!
详见: C++和STL中有哪些副作用或者稍不注意会产生性能开销的地方?
详见: C++11 之 enum class
例子参考: c++的lambda使用注意事项,可能导致的崩溃问题分析
有且只有thread_local关键字修饰的变量具有线程周期(thread duration),这些变量(或者说对象)在线程开始的时候被生成(allocated),在线程结束的时候被销毁(deallocated)。并且每 一个线程都拥有一个独立的变量实例(Each thread has its own instance of the object)。thread_local 可以和static 与 extern关键字联合使用,这将影响变量的链接属性(to adjust linkage)。
那么,哪些变量可以被声明为thread_local?以下3类都是ok的
详见: C++11中thread_local的使用
详见: 跟我学c++中级篇——zero overhead abstraction
移动语义:可以理解为转移所有权,拷贝是对于别人的资源,自己重新分配一块内存存储复制过来的资源,而对于移动语义,类似于转让或者资源窃取的意思,对于那块资源,转为自己所拥有,别人不再拥有也不会再使用,通过C++11新增的移动语义可以省去很多拷贝负担,如何利用移动语义,主要通过移动构造函数。
完美转发:指可以写一个接受任意实参的函数模板,并转发到其它函数,目标函数会收到与转发函数完全相同的实参。转发函数实参是左值那目标函数实参也是左值,转发函数实参是右值那目标函数也是右值。
参考: C++11之右值引用:移动语义和完美转发(带你了解移动构造函数、纯右值、将亡值、右值引用、std::move、forward等新概念)
列表初始化:可以直接在变量名后面加上初始化列表来进行对象的初始化。
参考: C++11之初始化列表
线程与进程的比较如下:
对于,线程相比进程能减少开销,体现在:
进程之间私有和共享的资源
私有:地址空间、堆、全局变量、栈、寄存器
共享:代码段,公共数据,进程目录,进程 ID
线程之间私有和共享的资源
私有:线程栈,寄存器,程序计数器
共享:堆,地址空间,全局变量,静态变量
在随机调度之下,线程执行有多种可能,其中某些可能会导致代码出bug就称为线程不安全.
最常见的就是对象new的问题:
分为三步:1.创建内存空间 2.往内存空间上构造对象 3.把这个内存的引用赋值给你要创建的变量
有时候编译器会认为先执行3或者先执行2最高效,就会出现指令顺序倒转的问题,这时另一个线程尝试读取变量的引用就会出现问题
线程之间的锁有: 互斥锁、条件锁、自旋锁、读写锁、递归锁。一般而言,锁的功能与性能成反比(详见C++11线程中的几种锁、如何理解互斥锁、条件锁、读写锁以及自旋锁?)
死锁:死锁是指两个或两个以上的进程(线程)在运行过程中因争夺资源而造成的一种僵局,若无外力作用,这些进程(线程)都将无法向前推进。
详见: 死锁四个必要条件及死锁的预防、检测、避免、解除
管道(PIPE)
(1)有名管道:一种半双工的通信方式,它允许无亲缘关系进程间的通信
①优点:可以实现任意关系的进程间的通信
②缺点:a、长期存于系统中,使用不当容易出错;b、缓冲区有限
(2)无名管道:一种半双工的通信方式,只能在具有亲缘关系的进程间使用(父子进程)
①优点:简单方便
②缺点:a、局限于单向通信;b、只能创建在它的进程以及其有亲缘关系的进程之间;c、缓冲区有限
信号量(Semaphore):一个计数器,可以用来控制多个线程对共享资源的访问
①优点:可以同步进程
②缺点:信号量有限
信号(Signal):一种比较复杂的通信方式,用于通知接收进程某个事件已经发生
消息队列(Message Queue):是消息的链表,存放在内核中并由消息队列标识符标识
①优点:可以实现任意进程间的通信,并通过系统调用函数来实现消息发送和接收之间的同步,无需考虑同步问题,方便
②缺点:信息的复制需要额外消耗 CPU 的时间,不适宜于信息量大或操作频繁的场合
共享内存(Shared Memory):映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问
①优点:无须复制,快捷,信息量大
②缺点:a、通信是通过将共享空间缓冲区直接附加到进程的虚拟地址空间中来实现的,因此进程间的读写操作的同步问题;b、利用内存缓冲区直接交换信息,内存的实体存在于计算机中,只能同一个计算机系统中的诸多进程共享,不方便网络通信
套接字(Socket):可用于不同计算机间的进程通信
①优点:
a、传输数据为字节级,传输数据可自定义,数据量小效率高;
b、传输数据时间短,性能高;
c、适合于客户端和服务器端之间信息实时交互;
d、可以加密,数据安全性强;
②缺点:需对传输的数据进行解析,转化成应用级的数据。
更多详见 C++基础语法梳理:进程与线程!知识点详细梳理
锁机制
包括互斥锁/量(mutex)、读写锁(reader-writer lock)、自旋锁(spin lock)、条件变量(condition)
信号量机制(Semaphore)
STL 六大组件:容器(Container)、算法(Algorithm)、迭代器(Iterator)、仿函数(Function object)、适配器(Adaptor)和 空间配置器(allocator)。
把pop()和top()的功能放在一个函数中,如果 stack 中存放的是较大是内容时,比如 vector 类型,取值的时候就会发生拷贝,如果拷贝失败,要弹出的数据将会丢失;就很可能出现下述的bug,导致原始数据丢失。
假设有一个stack,vector是一个动态容器,当你拷贝一个vector时,标准库会从堆上分配很多内存来完成这次拷贝。当这个系统处在重度负荷,或有严重的资源限制的情况下,这种内存分配就会失败,所以vector的拷贝构造函数可能会抛出一个std::bad_alloc异常。当vector中存有大量元素时,这种情况发生的可能性更大。当pop()函数返回“弹出值”时(也就是从栈中将这个值移除),会有一个潜在的问题:这个值被返回到调用函数的时候,栈才被改变;但当拷贝数据的时候,调用函数抛出一个异常会怎么样?如果事情真的发生了,要弹出的数据将会丢失;它的确从栈上移出了,但是拷贝失败了!std::stack的设计人员将这个操作分为两个部分:先获取顶部元素(top()),然后从栈中移除元素(pop())。这样,在不能安全的将元素拷贝出去的情况下,栈中的这个数据还依旧存在,没有丢失。当问题是堆空间不足时,应用可能会释放一些内存,然后再进行尝试。
参考: 为什么适配器stack中成员函数top()和pop()需要分离实现
STL包括两部分内容:容器和算法
容器即存放数据的地方,比如array, vector,分为两类,序列式容器和关联式容器
序列式容器,其中的元素不一定有序,但是都可以被排序,比如vector,list,queue,stack,heap, priority-queue, slist
关联式容器,内部结构是一个平衡二叉树,每个元素都有一个键值和一个实值,比如map, set, hashtable, hash_set
算法有排序,复制等,以及各个容器特定的算法
迭代器是STL的精髓,迭代器提供了一种方法,使得它能够按照顺序访问某个容器所含的各个元素,但无需暴露该容器的内部结构,它将容器和算法分开,让二者独立设计。
Vector是顺序容器,是一个动态数组,支持随机存取、插入、删除、查找等操作,在内存中是一块连续的空间。在原有空间不够情况下自动分配空间,增加为原来的两倍。vector随机存取效率高,但是在vector插入元素,需要移动的数目多,效率低下。
注意:vector动态增加大小时,并不是在原空间之后持续新空间(因为无法保证原空间之后尚有可供配置的空间),而是以原大小的两倍另外配置一块较大的空间,然后将原内容拷贝过来,然后才开始在原内容之后构造新元素,并释放原空间。因此,对vector的任何操作,一旦引起空间重新配置,指向原vector的所有迭代器就都失效了。
map 、set 、multiset 、multimap 的底层实现都是红黑树。
红 黑 树 的 特 性 :
构造函数:hash_map需要hash function和等于函数,而map需要比较函数(大于或小于)。
存储结构:hash_map以hashtable为底层,而map以RB-TREE为底层。
总的说来,hash_map查找速度比map快,而且查找速度基本和数据量大小无关,属于常数级别。而map的查找速度是logn级别。但不一定常数就比log小,而且hash_map还有hash function耗时。
如果考虑效率,特别当元素达到一定数量级时,用hash_map。
考虑内存,或者元素数量较少时,用map。
map是STL中的一个关联容器,提供键值对的数据管理。底层通过红黑树来实现,实际上是二叉排序树和非严格意义上的二叉平衡树。所以在map内部所有的数据都是有序的,且map的查询、插入、删除操作的时间复杂度都是O(logN)。
unordered_map和map类似,都是存储key-value对,可以通过key快速索引到value,不同的是unordered_map不会根据key进行排序。unordered_map底层是一个防冗余的哈希表,存储时根据key的hash值判断元素是否相同,即unoredered_map内部是无序的。
vector使用的注意点及其原因,频繁对vector调用push_back()对性能的影响和原因。
vector就是一个动态增长的数组,里面有一个指针指向一片连续的空间,当空间装不下的时候,会申请一片更大的空间,将原来的数据拷贝过去,并释放原来的旧空间。当删除的时候空间并不会被释放,只是清空了里面的数据。对比array是静态空间一旦配置了就不能改变大小。
vector的动态增加大小的时候,并不是在原有的空间上持续新的空间(无法保证原空间的后面还有可供配置的空间),而是以原大小的两倍另外配置一块较大的空间,然后将原内容拷贝过来,并释放原空间。在VS下是1.5倍扩容,在GCC下是2倍扩容。
vector和数组类似,拥有一段连续的内存空间。vector申请的是一段连续的内存,当插入新的元素内存不够时,通常以2倍重新申请更大的一块内存,将原来的元素拷贝过去,释放旧空间。因为内存空间是连续的,所以在进行插入和删除操作时,会造成内存块的拷贝,时间复杂度为o(n)。
list是由双向链表实现的,因此内存空间是不连续的。只能通过指针访问数据,所以list的随机存取非常没有效率,时间复杂度为o(n); 但由于链表的特点,能高效地进行插入和删除。
vector拥有一段连续的内存空间,能很好的支持随机存取,因此vector::iterator支持“+”,“+=”,“<”等操作符。
list的内存空间可以是不连续,它不支持随机访问,因此list::iterator则不支持“+”、“+=”、“<”等
vector::iterator和list::iterator都重载了“++”运算符。
总之,如果需要高效的随机存取,而不在乎插入和删除的效率,使用vector;
如果需要大量的插入和删除,而不关心随机存取,则应使用list。
STL内存管理使用二级内存配置器。
vec.clear():清空内容,但是不释放内存。
vector().swap(vec):清空内容,且释放内存,想得到一个全新的vector。
vec.shrink_to_fit():请求容器降低其capacity和size匹配。
vec.clear();vec.shrink_to_fit();:清空内容,且释放内存。
priority_queue:优先队列,其底层是用堆来实现的。在优先队列中,队首元素一定是当前队列中优先级最高的那一个
推荐阅读: C++ STL容器如何解决线程安全的问题?
STL实现的容器都是非侵入式容器,通过模板类可以放入任何类型的结构,与浸入式容器的最大不同是,C++的非侵入式容器必须存储用户数据的拷贝
参考: STL容器概述
参考 详解 TCP 连接的“三次握手”与“四次挥手”
如果应用一次请求发送的数据量比较小,没达到缓冲区大小,TCP则会将多个请求合并为同一个请求进行发送,站在业务上来看这就是「粘包」;
如果应用一次请求发送的数据量比较大,超过了缓冲区大小,TCP就会将其拆分为多次发送,这就是「拆包」,也就是将一个大的包拆分为多个小包进行发送。
常见的解决思路如下:
服务器给客户端发大量数据,Send的频率很高,那么就有可能在Send时发生错误(原因可能是又多种,可能是程序处理逻辑问题,多线程同步问题,缓冲区溢出问题等等),如果没有对Send失败做处理重发数据,那么客户端收到的数据就会比理论应该收到的少,就会造成丢数据,丢包的现象。
这种现象,其实本质上来说不是丢包,也不是丢数据,只是因为程序处理有错误,导致有些数据没有成功地被socket发送出去。
常用的解决方法如下: 拆包、加包头、发送,组合包,如果客户端、服务端掉线,常采用心跳测试。
详见: TCP通信丢包原因总结
TCP建立连接时之所以只需要"三次握手",是因为在第二次"握手"过程中,服务器端发送给客户端的TCP报文是以SYN与ACK作为标志位的。SYN是请求连接标志,表示服务器端同意建立连接;ACK是确认报文,表示告诉客户端,服务器端收到了它的请求报文。
即SYN建立连接报文与ACK确认接收报文是在同一次"握手"当中传输的,所以"三次握手"不多也不少,正好让双方明确彼此信息互通。
TCP释放连接时之所以需要“四次挥手”,是因为FIN释放连接报文与ACK确认接收报文是分别由第二次和第三次"握手"传输的。为何建立连接时一起传输,释放连接时却要分开传输?
所以是“三次握手”,“四次挥手”。
TCP建立连接时之所以只需要"三次握手",是因为在第二次"握手"过程中,服务器端发送给客户端的TCP报文是以SYN与ACK作为标志位的。SYN是请求连接标志,表示服务器端同意建立连接;ACK是确认报文,表示告诉客户端,服务器端收到了它的请求报文。
即SYN建立连接报文与ACK确认接收报文是在同一次"握手"当中传输的,所以"三次握手"不多也不少,正好让双方明确彼此信息互通。
所以是“三次握手”,“四次挥手”。
整个模型分为七层,物理层,数据链路层,网络层,传输层,会话层,表示层,应用层。
详见: OSI七层模型及各层作用
饿汉模式的单例模式本身就是现场安全的。懒汉模式的线程安全见 C++单例模式与线程安全
推荐阅读: c++的单例模式为什么不直接全部使用static,而是非要实例化一个对象?
简单工厂模式
简单工厂模式属于类的创建型模式,又叫做静态工厂方法模式。通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式可以减少客户程序对类创建过程的依赖。
优点:
缺点:
工厂模式
工厂方法模式同样属于类的创建型模式又被称为多态工厂模式 。工厂方法模式的意义是 定义一个创建产品对象的工厂接口,将实际创建工作推迟到子类当中。 核心工厂类不再负责产品的创建,这样核心类成为一个抽象工厂角色,仅负责具体工厂子类 必须实现的接口,这样进一步抽象化的好处是使得工厂方法模式可以使系统在不修改具体工厂角色的情况下引进新的产品
优点:
缺点:
抽象工厂模式
抽象工厂模式是所有形态的工厂模式中最为抽象和最一般性的。抽象工厂模式可以向客户端提供一个接口,使得客户端在不必指定产品的具体类型的情况下,能够创建多个产品族的产品对象。
抽象工厂方法是针对与一个产品族,使得易于交换产品系列,只需改变具体的工厂就可以使用不同的产品配置。当一个族中的产品对象被设计成一起工作且一个应用只适用同一族的对象,例如设计系统生成不同风格的UI界面,按钮,边框等UI元素在一起使用,并且只能同属于一种风格,这很容易使用抽象工厂实现。
优点:
缺点:
详见: C++工厂模式(简单工厂、工厂方法、抽象工厂)
详见: C++设计模式:三种工厂模式详解(简单工厂,工厂模式,抽象工厂)
单向链表:单向链表包含两个域,一个是信息域,一个是指针域。也就是单向链表的节点被分成两部分,一部分是保存或显示关于节点的信息,第二部分存储下一个节点的地址,而最后一个节点则指向一个空值。
优点:单向链表增加删除节点简单。遍历时候不会死循环。(双向也不会死循环,循环链表忘了进行控制的话很容易进入死循环);缺点:只能从头到尾遍历。只能找到后继,无法找到前驱,也就是只能前进。
双向链表:每个节点有2个链接,一个是指向前一个节点(当此链接为第一个链接时,指向的是空值或空列表),另一个则指向后一个节点(当此链接为最后一个链接时,指向的是空值或空列表)。意思就是说双向链表有2个指针,一个是指向前一个节点的指针,另一个则指向后一个节点的指针。
优点:可以找到前驱和后继,可进可退;缺点:增加删除节点复杂。
红黑树的查询性能略微逊色于AVL树,因为他比avl树会稍微不平衡最多一层,也就是说红黑树的查询性能只比相同内容的avl树最多多一次比较,但是,红黑树在插入和删除上完爆avl树,
avl树每次插入删除会进行大量的平衡度计算,而红黑树为了维持红黑性质所做的红黑变换和旋转的开销,相较于avl树为了维持平衡的开销要小得多
从任何一个节点到其最远的后代叶子的节点数不超过到最近的后代叶子的节点数的两倍。
每个具有 n 个节点的红黑树的高度 <= 2Log 2 (n+1)
详见: 红黑树详解
详见: 红黑树 (Red-Black Tree) – 介绍
队列和栈都是线性存储结构,但是两者的插入和删除数据的操作不同,队列是“先进先出”,栈是
“后进先出”。
c++面试常见问题汇总—建议收藏
C++常见面试题总结
C/C++ 最常见50道面试题
C++核心知识点汇总(面试)
精选 30 个 C++ 面试题(含解析)
如果你是一个C++面试官,你会问哪些问题?
k6k4中C/C++面试题
十大经典排序,你真的都会了吗?(源码详解)
漫画:“排序算法” 大总结
内存都没了,还能运行程序?
多个线程为了同个资源打起架来了,该如何让他们安分?
Linux 运维故障排查思路,有这篇文章就够了
万字长文!剑指offer全题解思路汇总
我的天!第一次知道操作系统的算法还能这么迷人!
24 张图彻底弄懂九大常见数据结构!
万字长文系统梳理C++函数指针
万字长文图解七道超高频位运算面试题
一口气搞懂「文件系统」,就靠这 25 张图了
看了齐姐这篇文章,再也不怕面试问树了
看完这篇操作系统,和面试官扯皮就没问题了。
史上最全的数据库面试题,面试必刷!
70道C语言与C++常见问答题
c++面试
C++面试题(1)
万字详解我今年经历的腾讯Linux C++ 笔试/面试题及答案
C++开发面试之——C++11新特性20问
腾讯 C++ 笔试/面试题及答案
C++面试——内存管理、堆栈、指针50问
C语言 / C++基础面试知识大集合
50 家公司的 C++ 面经总结,硬核分享!
一文让你搞懂设计模式
这里有60篇硬核文章
超硬核 | 2 万字+20 图带你手撕 STL 容器源码
熬夜整理的万字C/C++总结(一),值得收藏
现代 C++ 教程:高速上手 C++ 11/14/17/20
c++后端开发 资料整理学习