- Fink与Hadoop的简介以及联系
Bugkillers
hadoop大数据分布式
Fink和Hadoop是两个常用于大数据处理的开源工具,它们可以搭配使用以构建高效的数据处理系统。一、Fink和Hadoop的关系Fink:1、Fink是一个分布式流处理框架,专注于实时数据处理。它支持高吞吐、低延迟的流处理,适用于实时分析、事件驱动应用等场景。2、Fink提供精确一次(exactly-once)语义,确保数据处理的准确性。Hadoop:1、Hadoop是一个分布式存储和批处理框架
- Hbase深入浅出
天才之上
数据存储Hbase大数据存储
目录HBase在大数据生态圈中的位置HBase与传统关系数据库的区别HBase相关的模块以及HBase表格的特性HBase的使用建议Phoenix的使用总结HBase在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是Hadoop和Hadoop中的HDFS模块。大家熟知的Spark、以及Hadoop的MapReduce,可以理解为一种计算框架。而HDFS,我们可以认为是为计算框架服务的存
- 深入浅出了解HBase及RDD编程
山海王子
大数据hbase
深入浅出了解HBaseHBase简介架构HBase是什么样的数据库?关键是数据模型关键要素:什么是单元格时间戳的功能是什么?HBase为什么能存储海量数据创建一个HBase表配置Spark编写程序读取HBase数据编写程序向HBase写入数据关于搭建HBase高可用集群的图文教程,可参考我的另一篇博文——安装并配置HBase集群(5个节点)。HBase简介HBase是GoogleBigTable的
- HBase简介:高效分布式数据存储和处理
代码指四方
分布式hbase数据库大数据
HBase简介:高效分布式数据存储和处理HBase是一个高效的、可扩展的分布式数据库,它是构建在ApacheHadoop之上的开源项目。HBase的设计目标是为大规模数据存储和处理提供高吞吐量和低延迟的解决方案。它可以在成百上千台服务器上运行,并能够处理海量的结构化和半结构化数据。HBase的核心特点包括:分布式存储:HBase使用Hadoop分布式文件系统(HDFS)作为底层存储,数据被分布在集
- 在Hadoop集群中实现数据安全:技术与策略并行
Echo_Wish
实战高阶大数据hadoop大数据分布式
在Hadoop集群中实现数据安全:技术与策略并行随着大数据技术的广泛应用,Hadoop已经成为处理和存储海量数据的首选平台。然而,随着数据规模的扩大,如何确保Hadoop集群中的数据安全也成为了亟待解决的难题。毕竟,数据安全不仅关系到企业的隐私保护,也直接影响到数据的可信度与可用性。本文将探讨如何在Hadoop集群中实现数据安全,分析数据加密、访问控制、审计日志等方面的技术与策略,并通过一些具体的
- python编写mapreduce job教程
weixin_49526058
pythonmapreducehadoop
在Python中实现MapReduce作业,通常可以使用mrjob库,这是一个用于编写和执行MapReduce作业的Python库。它可以运行在本地模式或Hadoop集群上。以下是一个简单的MapReduce示例,它计算文本文件中每个单词的出现次数。安装mrjob首先,你需要安装mrjob库。可以通过pip安装:pipinstallmrjobMapReduce示例:计算单词频率1.创建一个MapR
- Knox原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Knox原理与代码实例讲解1.背景介绍在现代分布式系统中,安全性和隔离性是非常重要的需求。ApacheKnox是一个反向代理服务器,旨在为ApacheHadoop集群提供单一入口点,增强安全性和集中化管理。它位于Hadoop集群与客户端应用程序之间,充当网关和负载均衡器的角色。Knox的主要目标是:提供集中式身份验证和授权,减轻客户端应用程序的负担。实现多租户支持,允许不同的组织或部门安全地共享同
- Apache ZooKeeper 分布式协调服务
slovess
分布式apachezookeeper
1.ZooKeeper概述1.1定义与定位核心定位:分布式系统的协调服务,提供强一致性的配置管理、命名服务、分布式锁和集群管理能力核心模型:基于树形节点(ZNode)的键值存储,支持Watcher监听机制生态地位:Hadoop/Kafka等生态核心依赖,分布式系统基础设施级组件1.2设计目标强一致性:所有节点数据最终一致(基于ZAB协议)高可用性:集群半数以上节点存活即可提供服务顺序性:全局唯一递
- Hadoop常用端口号
海洋 之心
Hadoop问题解决hadoophbase大数据
Hadoop是一个由多个组件构成的分布式系统,每个组件都会使用一些特定的端口号来进行通信和交互。以下是Hadoop2.x常用的端口号列表:HDFS端口号:NameNode:50070SecondaryNameNode:50090DataNode:50010DataNode(数据传输):50020YARN端口号:ResourceManager:8088NodeManager:8042MapReduc
- Hadoop综合项目——二手房统计分析(可视化篇)
WHYBIGDATA
大数据项目hadoop大数据
Hadoop综合项目——二手房统计分析(可视化篇)文章目录Hadoop综合项目——二手房统计分析(可视化篇)0、写在前面1、数据可视化1.1二手房四大一线城市总价Top51.2统计各个楼龄段的二手房比例1.3统计各个城市二手房标签的各类比例1.4统计各个城市各个楼层的平均价格1.5统计各个城市二手房优势的各类比例1.6统计各个城市二手房数量和关注人数的关系1.7统计各个城市二手房规格的各类比例1.
- Spark 性能优化(四):Cache
LevenBigData
spark性能调优spark性能优化大数据
在Spark中,缓存是一种将计算结果存储在内存中的方式,目的是加速后续操作。当你执行迭代算法或查询时,如果多次重复使用相同的数据集,缓存可以避免每次都重新计算相同的转换操作。通过缓存,Spark可以将数据存储在内存中,这样在后续的处理阶段就能更快地访问。1.Spark缓存的关键点:缓存基本概念:通过调用.cache()对DataFrame或RDD进行缓存。默认情况下,数据会存储在内存中(RAM),
- 使用Docker搭建Flink集群
O_1CxH
Flink大数据Kafka大数据dockerflink容器
目录使用Docker搭建Flink集群docker-compose一键搭建步骤附录参考资料使用Docker搭建Flink集群在学习大数据框架的时候,需要一个真实的环境。我们知道,像spark、flink这些计算框架都有多种运行模式:在本地使用多线程模拟集群真正的分布式集群如果直接在IDE(Intellj)里面编译和运行写好的程序,实际上是用的前一种运行模式;如果想尝试真正的生产环境中任务的提交和管
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- spark任务运行
冰火同学
Sparkspark大数据分布式
运行环境在这里插入代码片[root@hadoop000conf]#java-versionjavaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)[root@hadoop000conf]#echo$JAVA_HOME/home/hadoop/app/jdk1.8.0_144[root@hadoop000conf]#
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 集群与分片:深入理解及应用实践
一休哥助手
架构系统架构
目录引言什么是集群?集群的定义集群的类型什么是分片?分片的定义分片的类型集群与分片的关系集群的应用场景负载均衡高可用性分片的应用场景大数据处理数据库分片集群与分片的架构设计系统架构设计数据存储设计案例分析Hadoop集群Elasticsearch分片性能优化策略集群性能优化分片性能优化挑战和解决方案总结参考资料引言在现代计算系统中,处理大规模数据和提高系统的可靠性已经成为了基础需求。集群和分片是两
- 【Redis】golang操作Redis基础入门
寸 铁
go数据库Redisredisgolang数据库CRUD基本操作分布式键值对
【Redis】golang操作Redis基础入门大家好我是寸铁总结了一篇【Redis】golang操作Redis基础入门sparkles:喜欢的小伙伴可以点点关注Redis的作用Redis(RemoteDictionaryServer)是一个开源的内存数据库,它主要用于存储键值对,并提供多种数据结构的支持。Redis的主要作用包括:1.缓存:Redis可以作为缓存系统,将常用的数据缓存在内存中,以
- hive spark读取hive hbase外表报错分析和解决
spring208208
hivehivesparkhbase
问题现象使用Sparkshell操作hive关联Hbase的外表导致报错;hive使用tez引擎操作关联Hbase的外表时报错。问题1:使用tez或spark引擎,在hive查询时只要关联hbase的hive表就会有问题其他表正常。“org.apache.hadoop.hbase.client.RetriesExhaustedException:Can’tgetthelocations”问题2:s
- spark-广播变量
哈哈哈哈q
+sparkhdfshadoop大数据spark
当本地数据极大的时候,可以使用广播变量,使得减少内存。本地集合对象和分布式集合对象(RDD)进行关联的时候,需要将本地集合对象广播变量。本地的数据传输到集群上,会发到每一个线程,每一个分区。每一个进程executor,有多个线程分区,进程内的线程数据共享因此,给每一个线程发送数据会导致数据占用,浪费资源。所有,出现了广播变量,使得只发送给进程代码使用:broadcast=sc.broadcast(
- Ubuntu下配置安装Hadoop 2.2
weixin_30501857
大数据java运维
---恢复内容开始---这两天玩Hadoop,之前在我的Mac上配置了好长时间都没成功的Hadoop环境,今天想在win7虚拟机下的Ubuntu12.0464位机下配置,然后再建一个组群看一看。参考资料:1.InstallingsinglenodeHadoop2.2.0onUbuntu:http://bigdatahandler.com/hadoop-hdfs/installing-single-
- 探索数据云的无缝桥梁:Apache Spark 与 Snowflake 的完美结合
窦育培
探索数据云的无缝桥梁:ApacheSpark与Snowflake的完美结合spark-snowflakeSnowflakeDataSourceforApacheSpark.项目地址:https://gitcode.com/gh_mirrors/sp/spark-snowflake项目介绍在大数据处理的浩瀚宇宙中,Snowflake以其独特的云数据仓库能力闪耀,而ApacheSpark则是数据分析和
- 2014 6月,比较老了
金金2019
AwesomeBigDataAcuratedlistofawesomebigdataframeworks,resourcesandotherawesomeness.Inspiredbyawesome-php,awesome-python,awesome-ruby,hadoopecosystemtable&big-data.Yourcontributionsarealwayswelcome!Awes
- Hive服务启动 之 metastore配置 和 hiveserver2
龍浮影
hive
Hive服务启动之metastore服务配置和hiveserver2 配置hive的时候都需要配置hive-site.xml,配置过程中可以选择hive直连或者使用metastore服务间接连接,那么他们之间有什么区别呢? 首先贴直连配置代码:javax.jdo.option.ConnectionURLjdbc:mysql://hadoop102:3306/metastore?useSSL=fal
- maven插件学习(maven-shade-plugin和maven-antrun-plugin插件)
catcher92
javamavenmaven学习大数据
整合spark3.3.x和hive2.1.1-cdh6.3.2碰到个问题,就是spark官方支持的hive是2.3.x,但是cdh中的hive确是2.1.x的,项目中又计划用spark-thrift-server,导致编译过程中有部分报错。其中OperationLog这个类在hive2.3中新增加了几个方法,导致编译报错。这个时候有两种解决办法:修改spark源码,注释掉调用OperationLo
- 使用SparkLLM实现智能聊天:技术原理与实战演示
shuoac
java
在本篇文章中,我们将探讨如何使用iFlyTek的SparkLLM模型来实现智能聊天功能。我们将详细介绍SparkLLM的技术背景、核心原理,并通过实际代码展示如何进行实现。另外,还会分析应用场景并给出一些实践建议。技术背景介绍SparkLLM是由iFlyTek提供的一种强大的语言模型,支持多种语言生成任务。它能够理解并生成自然语言,适用于对话系统、内容生成、智能客服等场景。核心原理解析SparkL
- 5. clickhouse 单节点多实例部署
Toroidals
大数据组件安装部署教程clickhouse单节点多实例伪分布安装部署
环境说明:主机名:cmc01为例操作系统:centos7安装部署软件版本部署方式centos7zookeeperzookeeper-3.4.10伪分布式hadoophadoop-3.1.3伪分布式hivehive-3.1.3-bin伪分布式clickhouse21.11.10.1-2单节点多实例dolphinscheduler3.0.0单节点kettlepdi-ce-9.3.0.0单节点sqoop
- Spark 性能优化 (三):RBO 与 CBO
LevenBigData
spark性能调优spark性能优化ajax
1.RBO的核心概念在ApacheSpark的查询优化过程中,规则优化(Rule-BasedOptimization,RBO)是Catalyst优化器的一个关键组成部分。它主要依赖于一组固定的规则进行优化,而不是基于统计信息(如CBO-Cost-BasedOptimization)。RBO主要通过一系列逻辑规则(LogicalRules)和物理规则(PhysicalRules)来转换和优化查询计划
- 蓝易云 - HBase基础知识
蓝易云
hbase数据库大数据phppython人工智能
HBase是一个分布式、可伸缩、列式存储的NoSQL数据库,它建立在Hadoop的HDFS之上,提供高可靠性、高性能的数据存储和访问。以下是HBase的基础知识:数据模型:HBase以表的形式存储数据,每个表由行和列组成,可以动态添加列族。每行由唯一的行键标识,列族和列限定符(Qualifier)用于唯一标识列。架构:HBase采用分布式架构,数据被分散存储在多个RegionServer上,每个R
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- java获取hive表所有字段,Hive Sql从表中动态获取空列计数
拾亿年
java获取hive表所有字段
我正在使用datastaxspark集成和sparkSQLthrift服务器,它为我提供了一个HiveSQL接口来查询Cassandra中的表.我的数据库中的表是动态创建的,我想要做的是仅根据表名在表的每列中获取空值的计数.我可以使用describedatabase.table获取列名,但在hiveSQL中,如何在另一个为所有列计数null的select查询中使用其输出.更新1:使用Dudu的解决
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23