- 【医学影像】无痛安装mamba
周树皮
医学影像python
去年编辑的一个帖子。摆了一段时间后重新回归,发送一下作为状态分界线。很癫狂的体验,man,whatcanisay!issue查看我的狗急跳墙状态1.确定版本cudanvcc-Vpythonpython--versiontorchpipshowtorch2.下载对应版本wheelcausal-conv1d:https://github.com/Dao-AILab/causal-conv1d/rele
- 使用tensorflow的多项式回归的例子(二)
lishaoan77
tensorflowtensorflow回归人工智能多项式回归
例2importtensorflowastfimportnumpyasnpimportmatplotlib.pyplotaspltplt.style.use('default')#importtensorflow.contrib.eagerastfe#fromgoogle.colabimportfiles#tf.enable_eager_execution()x=np.arange(0,5,0.1
- 使用tensorflow的线性回归的例子(七)
lishaoan77
tensorflowtensorflow线性回归人工智能
L1与L2损失这个脚本展示如何用TensorFlow求解线性回归。在算法的收敛性中,理解损失函数的影响是很重要的。这里我们展示L1和L2损失函数是如何影响线性回归的收敛性的。我们使用iris数据集,但是我们将改变损失函数和学习速率来看收敛性的改变。importmatplotlib.pyplotaspltimportnumpyasnpimporttensorflowastffromsklearnim
- 使用tensorflow的线性回归的例子(十二)
lishaoan77
tensorflowtensorflow线性回归人工智能戴明回归
DemingRegression这里展示如何用TensorFlow求解线性戴明回归。=+y=Ax+b我们用iris数据集,特别是:y=SepalLength且x=PetalWidth。戴明回归Demingregression也称为totalleastsquares,其中我们最小化从预测线到实际点(x,y)的最短的距离。最小二乘线性回归最小化与预测线的垂直距离,戴明回归最小化与预测线的总的距离,这种
- 12 | 走向元宇宙:数字化工作与生活
_Rye_
元宇宙
专栏快接近尾声了。在之前的课程里,我们一直在用一个框架来概括元宇宙,那就是:元宇宙=立体互联网+价值互联网。这个公式可以帮助我们从宏观角度更好地理解元宇宙。当我们回归工作和生活,用更加个人化的角度来观察元宇宙时,我们可以换用另外一个等式:元宇宙=实体空间+数字空间。通过这个等式,我们可以看到,元宇宙将带给我们线上线下全面融合的数字生活。这一讲的讨论分成两个部分。首先,我们来看看自己周围的数字化发展
- 机器学习算法:核心原理与前沿发展综述
fmvrj34202
机器学习算法人工智能
机器学习算法作为人工智能的核心驱动力,正在重塑我们解决问题的范式。本文将系统性地探讨机器学习算法的分类体系、数学基础、优化方法以及最新发展趋势,为从业者提供技术参考。一、算法分类体系根据学习范式,机器学习算法可分为三大类:监督学习:基于标注数据的建模方法线性回归:最小化平方误差的闭式解θ=(XᵀX)⁻¹Xᵀy支持向量机:通过核技巧实现非线性分类,优化目标为max(0,1-yᵢ(w·xᵢ+b))决策
- 机器学习每周挑战——二手车车辆信息&交易售价数据
梦想成为一名机器学习高手
机器学习python人工智能
这是数据集的截图目录背景描述数据说明车型对照:燃料类型对照:老规矩,第一步先导入用到的库第二步,读入数据:第三步,数据预处理第四步:对数据的分析第五步:模型建立前的准备工作第六步:多元线性回归模型的建立第七步:随机森林模型的建立问题:背景描述本数据爬取自印度最大的二手车交易平台CARS24,包含8000+该平台上交易车辆的关键评估信息。CARS24成立于2015年,总部位于印度古尔冈,是一个在印度
- 深度学习 最简单的神经网络 线性回归网络
用最简单的线性模型讲清神经网络训练全流程,让你5分钟看懂AI是怎么学会预测的1真实神经元结构真实神经元包括:树突接收其他神经元传来的电信号(输入)。细胞核负责整合输入信号并产生动作电位。轴突传导动作电位到下一个神经元。突触释放神经递质,将信号传递给下一个神经元的树突。2线性回归神经网络原理(与神经元对比)假设输入是x_1,x_2,x_3x\_1,x\_2,x\_3x_1,x_2,x_3,权重是w_
- 策略与工厂的演进:打造工业级Spring路由框架
文章目录**引言:从“学术模型”到“工程产品”****一、经典工厂模式的“原罪”****原罪一:严重违反“开闭原则”——一场“永无止境的手术”****原罪二:彻底破坏“依赖注入”——一座“脱离现代文明的孤岛”****二、设计演进:注册表驱动的“智能工厂”****2.1设计的组成部分****2.2新设计如何“救赎”两大原罪**引言:从“学术模型”到“工程产品”设计模式的学习,最终要回归到解决复杂的业
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- 单元测试详解
测试老哥
单元测试测试工具自动化测试软件测试python测试用例职场和发展
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快一、什么是单元测试?单元测试是指,对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作,这里的最小可测试单元通常是指函数或者类;单元测试属于最严格的软件测试手段,是最接近代码底层实现的验证手段,可以在软件开发的早期以最小的成本保证局部代码的质量。另外,单元测试都以自动化的方式执行,所以在大量回归测试的场景下执行单元测
- [特殊字符] AlphaGo:“神之一手”背后的智能革命与人机博弈新纪元
大千AI助手
人工智能Python#OTHER人工智能算法数据挖掘机器学习alphagogoogle围棋
从围棋棋盘到科学前沿的通用人工智能范式突破本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与历史意义AlphaGo是由谷歌DeepMind团队开发的围棋人工智能程序,其里程碑意义在于:首破人类围棋壁垒:2016年以4:1击败世界冠军李世石九段,成为首个在完整对局中战胜人类顶尖棋手的AI。
- 隐马尔可夫模型(HMM):观测背后的状态解码艺术
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法HMM马尔科夫概率论
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心概念:双重随机过程隐马尔可夫模型(HiddenMarkovModel,HMM)是一种通过可观测序列推断隐含状态序列的概率图模型,包含两个核心随机过程:隐含状态链:不可观测的马尔可夫过程${q_t}$P(qt∣qt−1,qt−2,…,q1)=P(
- PageRank:互联网的马尔可夫链平衡态
大千AI助手
人工智能Python#OTHER人工智能机器学习条件概率贝叶斯PageRank马尔科夫链MC
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!PageRank算法本质上是一个在网页图上定义的离散时间马尔可夫链(DTMC),其核心思想是将网页间的链接关系转化为状态转移概率。以下是详细分析:一、马尔可夫链的核心要素在PageRank中的体现马尔可夫链要素PageRank对应数学描述状态空间网页集
- MCMC:高维概率采样的“随机游走”艺术
大千AI助手
人工智能Python#OTHER人工智能数据挖掘机器学习算法MCMC马尔科夫概率论
MCMC(马尔可夫链蒙特卡洛)是一种从复杂概率分布中高效采样的核心算法,它解决了传统采样方法在高维空间中的“维度灾难”问题。以下是其技术本质、关键算法及实践的深度解析:本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、MCMC要解决的核心问题目标:从目标分布(π(x)\pi(\mathbf{x})
- vLLM 优化与调优:提升模型性能的关键策略
强哥之神
人工智能深度学习计算机视觉deepseek智能体vllm
在当今人工智能领域,大语言模型(LLM)的应用日益广泛,而优化和调优这些模型的性能成为了至关重要的任务。vLLM作为一种高效的推理引擎,提供了多种策略来提升模型的性能。本文将深入探讨vLLMV1的优化与调优策略,帮助读者更好地理解和应用这些技术。抢占式调度(Preemption)由于Transformer架构的自回归特性,有时键值缓存(KVcache)空间不足以处理所有批量请求。在这种情况下,vL
- 创客匠人:从 “内容输出” 到 “关系经营”,解锁 IP 变现的本质
创小匠
tcp/ip网络协议网络
当“IP变现”成为创业圈的热词,许多创始人陷入“内容越专业,变现越困难”的怪圈。创客匠人通过深度观察得出结论:IP变现的关键,不在于输出多少知识,而在于能否从“打造影响力”转向“构建关系链”。这种转变重新定义了创始人IP打造的路径,让知识变现回归“人与人连接”的本质。真实感是IP穿透流量的核心力量。创客匠人发现,成功的创始人IP都有一个共性:不刻意塑造“完美人设”,而是以真实面目面对用户。有人担心
- 推测性解码:加速多模态大型语言模型的推理
人工智能培训咨询叶梓
人工智能前沿语言模型人工智能自然语言处理计算机视觉推理多模态算法
大模型(LLMs)以其卓越的性能在多个应用场景中大放异彩。然而,随着应用的深入,这些模型的推理速度问题逐渐凸显。为了解决这一挑战,推测性解码(SpeculativeDecoding,SPD)技术应运而生。本文深入探讨了SPD在多模态大型语言模型(MLLMs)中的应用,尤其是针对LLaVA7B模型的优化。MLLMs通过融合视觉和文本数据,极大地丰富了模型与用户的互动,但同时也面临着自回归生成和内存带
- Python自动化测试基础知识
心 一
Python自动化测试python开发语言
Python自动化测试基础知识一、自动化测试基础概念1.什么是自动化测试使用脚本和工具代替人工执行测试用例的过程通过编写代码来模拟用户操作,验证系统功能核心目标是提高测试效率,减少重复劳动2.自动化测试的优势高效率:可快速执行大量测试用例可重复:相同测试可反复执行,结果一致准确性:避免人为错误覆盖率:可执行难以手动测试的复杂场景持续集成:易于与CI/CD流程集成3.自动化测试的适用场景回归测试性能
- AlphaEvolve:谷歌的算法进化引擎 | 从数学证明到芯片设计的AI自主发现新纪元
大千AI助手
人工智能Python#OTHER算法人工智能深度学习AlphaEvolvegooglegemini
AlphaEvolve:谷歌的算法进化引擎|从数学证明到芯片设计的AI自主发现新纪元——结合大语言模型与进化计算,重塑科学发现与工程优化的通用智能体本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!⚙️一、核心定义与技术架构AlphaEvolve是由谷歌DeepMind开发的通用科学AI智能体,其核心
- 机器学习知识点复习 上(保研、复试、面试)百面机器学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
- Python实现基于POA-CNN-LSTM-Attention鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行多变量回归预测的详细项目实例
nantangyuxi
Python算法神经网络python人工智能深度学习目标检测机器学习
目录Python实她基她POA-CNN-LSTM-Attentikon鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行她变量回归预测她详细项目实例...1项目背景介绍...1项目目标她意义...1提升她变量回归预测精度...2优化模型训练效率...2python复制ikmpoxtos#操作系统接口,用她环境管理和文件操作ikmpoxtqaxnikngs#警告管理模块,控制运行时警
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- 动手学深度学习3.3线性回归的简洁实现-笔记&练习(PyTorch)
scdifsn
深度学习线性回归笔记pytorch
以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。本节课程地址:线性回归的简洁实现_哔哩哔哩_bilibili本节教材地址:3.3.线性回归的简洁实现—动手学深度学习2.0.0documentation(d2l.ai)本节开源代码:...>d2l-zh>pytorch>chapter_linear-networks>linear-regre
- Python机器学习入门必看!从原理到实战,手把手教你线性回归模型
小张在编程
python机器学习线性回归
引言在人工智能浪潮席卷全球的今天,机器学习(MachineLearning)早已不再是实验室的“黑科技”——打开购物APP的“猜你喜欢”、输入搜索词后的“相关推荐”、甚至天气预报中的温度预测,背后都有机器学习模型的身影。而在线性回归(LinearRegression)作为机器学习中最基础、最经典的监督学习模型,堪称机器学习的“敲门砖”。本文将从原理到实战,带你彻底掌握这一核心算法。一、机器学习的“
- 【机器学习笔记 Ⅱ】9 模型评估
巴伦是只猫
机器学习机器学习笔记人工智能
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。以下是系统化的评估方法,涵盖分类、回归、聚类等任务的评估指标和技术:一、分类模型评估1.基础指标2.高级指标ROC-AUC:通过绘制真正例率(TPR)vs假正例率(FPR)曲线下面积评估模型整体性能。AUC=1:完美分类;AUC=0.5:随机猜测。适用于二分类及多分类(OvR或OvO策略)。混淆矩阵:可视化模型在各类别上的具体错误(如将
- bounding box 回归
【目标检测】基础知识:IoU、NMS、Boundingboxregression-知乎(zhihu.com)
- 2.线性神经网络--Softmax回归
温柔济沧海
深度学习神经网络回归人工智能
2.1从零实现Softmax回归#数据集导入importtorchimporttorchvisionfromtorchvisionimporttransformsimportmatplotlib.pyplotaspltfromtqdmimporttqdmfromtorch.utils.dataimportDataLoader#####################################
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持