深度学习基础知识数据 数据预处理transforms流程讲解

深度学习基础知识数据 数据预处理transforms流程讲解

  • 1、数据预处理
  • 2、使用节点
  • 2、transform.RandomResizedCrop 随机尺寸裁剪缩放
  • 3、水平翻转 与 垂直翻转
  • 4、ColorJitter变换
  • 5、ToTensor
  • 6、Normalization 归一化
  • 7、transforms.Compose
  • 8、重写transforms
    • 1、分类任务
    • 2、目标检测任务
    • 3、分割任务

数据增强可以增加训练集的样本数量,缓解过拟合,并提高模型的泛化能力,从而有效提升算法的性能

1、数据预处理

深度学习基础知识数据 数据预处理transforms流程讲解_第1张图片

2、使用节点

深度学习基础知识数据 数据预处理transforms流程讲解_第2张图片

2、transform.RandomResizedCrop 随机尺寸裁剪缩放

深度学习基础知识数据 数据预处理transforms流程讲解_第3张图片

3、水平翻转 与 垂直翻转

深度学习基础知识数据 数据预处理transforms流程讲解_第4张图片

4、ColorJitter变换

深度学习基础知识数据 数据预处理transforms流程讲解_第5张图片

5、ToTensor

深度学习基础知识数据 数据预处理transforms流程讲解_第6张图片

6、Normalization 归一化

在这里插入图片描述
深度学习基础知识数据 数据预处理transforms流程讲解_第7张图片

7、transforms.Compose

深度学习基础知识数据 数据预处理transforms流程讲解_第8张图片

8、重写transforms

1、分类任务

深度学习基础知识数据 数据预处理transforms流程讲解_第9张图片

2、目标检测任务

重写 transforms 的目的,接受多个参数,并对图像 和 标注做同步处理
下面以SSD目标检测项目中的重写transforms方法为例:
深度学习基础知识数据 数据预处理transforms流程讲解_第10张图片
重写transforms.py代码文件

import random

import torch
import torchvision.transforms as t
from torchvision.transforms import functional as F

from src import dboxes300_coco, calc_iou_tensor, Encoder


class Compose(object):
    """组合多个transform函数"""
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target=None):
        for trans in self.transforms:
            image, target = trans(image, target)
        return image, target


class ToTensor(object):
    """将PIL图像转为Tensor"""
    def __call__(self, image, target):
        image = F.to_tensor(image).contiguous()
        return image, target


class RandomHorizontalFlip(object):
    """随机水平翻转图像以及bboxes,该方法应放在ToTensor后"""
    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, image, target):
        if random.random() < self.prob:
            # height, width = image.shape[-2:]
            image = image.flip(-1)  # 水平翻转图片
            bbox = target["boxes"]
            # bbox: xmin, ymin, xmax, ymax
            # bbox[:, [0, 2]] = width - bbox[:, [2, 0]]  # 翻转对应bbox坐标信息
            bbox[:, [0, 2]] = 1.0 - bbox[:, [2, 0]]  # 翻转对应bbox坐标信息
            target["boxes"] = bbox
        return image, target


# This function is from https://github.com/chauhan-utk/ssd.DomainAdaptation.
class SSDCropping(object):
    """
    根据原文,对图像进行裁剪,该方法应放在ToTensor前
    Cropping for SSD, according to original paper
    Choose between following 3 conditions:
    1. Preserve the original image
    2. Random crop minimum IoU is among 0.1, 0.3, 0.5, 0.7, 0.9
    3. Random crop
    Reference to https://github.com/chauhan-utk/src.DomainAdaptation
    """
    def __init__(self):
        self.sample_options = (
            # Do nothing
            None,
            # min IoU, max IoU
            (0.1, None),
            (0.3, None),
            (0.5, None),
            (0.7, None),
            (0.9, None),
            # no IoU requirements
            (None, None),
        )
        self.dboxes = dboxes300_coco()

    def __call__(self, image, target):
        # Ensure always return cropped image
        while True:
            mode = random.choice(self.sample_options)
            if mode is None:  # 不做随机裁剪处理
                return image, target

            htot, wtot = target['height_width']

            min_iou, max_iou = mode
            min_iou = float('-inf') if min_iou is None else min_iou
            max_iou = float('+inf') if max_iou is None else max_iou

            # Implementation use 5 iteration to find possible candidate
            for _ in range(5):
                # 0.3*0.3 approx. 0.1
                w = random.uniform(0.3, 1.0)
                h = random.uniform(0.3, 1.0)

                if w/h < 0.5 or w/h > 2:  # 保证宽高比例在0.5-2之间
                    continue

                # left 0 ~ wtot - w, top 0 ~ htot - h
                left = random.uniform(0, 1.0 - w)
                top = random.uniform(0, 1.0 - h)

                right = left + w
                bottom = top + h

                # boxes的坐标是在0-1之间的
                bboxes = target["boxes"]
                ious = calc_iou_tensor(bboxes, torch.tensor([[left, top, right, bottom]]))

                # tailor all the bboxes and return
                # all(): Returns True if all elements in the tensor are True, False otherwise.
                if not ((ious > min_iou) & (ious < max_iou)).all():
                    continue

                # discard any bboxes whose center not in the cropped image
                xc = 0.5 * (bboxes[:, 0] + bboxes[:, 2])
                yc = 0.5 * (bboxes[:, 1] + bboxes[:, 3])

                # 查找所有的gt box的中心点有没有在采样patch中的
                masks = (xc > left) & (xc < right) & (yc > top) & (yc < bottom)

                # if no such boxes, continue searching again
                # 如果所有的gt box的中心点都不在采样的patch中,则重新找
                if not masks.any():
                    continue

                # 修改采样patch中的所有gt box的坐标(防止出现越界的情况)
                bboxes[bboxes[:, 0] < left, 0] = left
                bboxes[bboxes[:, 1] < top, 1] = top
                bboxes[bboxes[:, 2] > right, 2] = right
                bboxes[bboxes[:, 3] > bottom, 3] = bottom

                # 虑除不在采样patch中的gt box
                bboxes = bboxes[masks, :]
                # 获取在采样patch中的gt box的标签
                labels = target['labels']
                labels = labels[masks]

                # 裁剪patch
                left_idx = int(left * wtot)
                top_idx = int(top * htot)
                right_idx = int(right * wtot)
                bottom_idx = int(bottom * htot)
                image = image.crop((left_idx, top_idx, right_idx, bottom_idx))

                # 调整裁剪后的bboxes坐标信息
                bboxes[:, 0] = (bboxes[:, 0] - left) / w
                bboxes[:, 1] = (bboxes[:, 1] - top) / h
                bboxes[:, 2] = (bboxes[:, 2] - left) / w
                bboxes[:, 3] = (bboxes[:, 3] - top) / h

                # 更新crop后的gt box坐标信息以及标签信息
                target['boxes'] = bboxes
                target['labels'] = labels

                return image, target


class Resize(object):
    """对图像进行resize处理,该方法应放在ToTensor前"""
    def __init__(self, size=(300, 300)):
        self.resize = t.Resize(size)

    def __call__(self, image, target):
        image = self.resize(image)
        return image, target


class ColorJitter(object):
    """对图像颜色信息进行随机调整,该方法应放在ToTensor前"""
    def __init__(self, brightness=0.125, contrast=0.5, saturation=0.5, hue=0.05):
        self.trans = t.ColorJitter(brightness, contrast, saturation, hue)

    def __call__(self, image, target):
        image = self.trans(image)
        return image, target


class Normalization(object):
    """对图像标准化处理,该方法应放在ToTensor后"""
    def __init__(self, mean=None, std=None):
        if mean is None:
            mean = [0.485, 0.456, 0.406]
        if std is None:
            std = [0.229, 0.224, 0.225]
        self.normalize = t.Normalize(mean=mean, std=std)

    def __call__(self, image, target):
        image = self.normalize(image)
        return image, target


class AssignGTtoDefaultBox(object):
    """将DefaultBox与GT进行匹配"""
    def __init__(self):
        self.default_box = dboxes300_coco()
        self.encoder = Encoder(self.default_box)

    def __call__(self, image, target):
        boxes = target['boxes']
        labels = target["labels"]
        # bboxes_out (Tensor 8732 x 4), labels_out (Tensor 8732)
        bboxes_out, labels_out = self.encoder.encode(boxes, labels)
        target['boxes'] = bboxes_out
        target['labels'] = labels_out

        return image, target

重写的dataset类文件代码如下:

from torch.utils.data import Dataset
import os
import torch
import json
from PIL import Image
from lxml import etree


class VOCDataSet(Dataset):
    """读取解析PASCAL VOC2007/2012数据集"""

    def __init__(self, voc_root, year="2012", transforms=None, train_set='train.txt'):
        assert year in ["2007", "2012"], "year must be in ['2007', '2012']"
        # 增加容错能力
        if "VOCdevkit" in voc_root:
            self.root = os.path.join(voc_root, f"VOC{year}")
        else:
            self.root = os.path.join(voc_root, "VOCdevkit", f"VOC{year}")
        self.img_root = os.path.join(self.root, "JPEGImages")
        self.annotations_root = os.path.join(self.root, "Annotations")

        txt_list = os.path.join(self.root, "ImageSets", "Main", train_set)

        with open(txt_list) as read:
            self.xml_list = [os.path.join(self.annotations_root, line.strip() + ".xml")
                             for line in read.readlines() if len(line.strip()) > 0]

        # read class_indict
        json_file = "./pascal_voc_classes.json"
        assert os.path.exists(json_file), "{} file not exist.".format(json_file)
        with open(json_file, 'r') as f:
            self.class_dict = json.load(f)

        self.transforms = transforms

    def __len__(self):
        return len(self.xml_list)

    def __getitem__(self, idx):
        # read xml
        xml_path = self.xml_list[idx]
        with open(xml_path) as fid:
            xml_str = fid.read()
        xml = etree.fromstring(xml_str)
        data = self.parse_xml_to_dict(xml)["annotation"]
        data_height = int(data["size"]["height"])
        data_width = int(data["size"]["width"])
        height_width = [data_height, data_width]
        img_path = os.path.join(self.img_root, data["filename"])
        image = Image.open(img_path)
        if image.format != "JPEG":
            raise ValueError("Image '{}' format not JPEG".format(img_path))

        assert "object" in data, "{} lack of object information.".format(xml_path)
        boxes = []
        labels = []
        iscrowd = []
        for obj in data["object"]:
            # 将所有的gt box信息转换成相对值0-1之间
            xmin = float(obj["bndbox"]["xmin"]) / data_width
            xmax = float(obj["bndbox"]["xmax"]) / data_width
            ymin = float(obj["bndbox"]["ymin"]) / data_height
            ymax = float(obj["bndbox"]["ymax"]) / data_height

            # 进一步检查数据,有的标注信息中可能有w或h为0的情况,这样的数据会导致计算回归loss为nan
            if xmax <= xmin or ymax <= ymin:
                print("Warning: in '{}' xml, there are some bbox w/h <=0".format(xml_path))
                continue
                
            boxes.append([xmin, ymin, xmax, ymax])
            labels.append(self.class_dict[obj["name"]])
            if "difficult" in obj:
                iscrowd.append(int(obj["difficult"]))
            else:
                iscrowd.append(0)

        # convert everything into a torch.Tensor
        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        labels = torch.as_tensor(labels, dtype=torch.int64)
        iscrowd = torch.as_tensor(iscrowd, dtype=torch.int64)
        height_width = torch.as_tensor(height_width, dtype=torch.int64)
        image_id = torch.tensor([idx])
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])

        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd
        target["height_width"] = height_width

        if self.transforms is not None:
            image, target = self.transforms(image, target)

        return image, target

    def get_height_and_width(self, idx):
        # read xml
        xml_path = self.xml_list[idx]
        with open(xml_path) as fid:
            xml_str = fid.read()
        xml = etree.fromstring(xml_str)
        data = self.parse_xml_to_dict(xml)["annotation"]
        data_height = int(data["size"]["height"])
        data_width = int(data["size"]["width"])
        return data_height, data_width

    def parse_xml_to_dict(self, xml):
        """
        将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
        Args:
            xml: xml tree obtained by parsing XML file contents using lxml.etree

        Returns:
            Python dictionary holding XML contents.
        """

        if len(xml) == 0:  # 遍历到底层,直接返回tag对应的信息
            return {xml.tag: xml.text}

        result = {}
        for child in xml:
            child_result = self.parse_xml_to_dict(child)  # 递归遍历标签信息
            if child.tag != 'object':
                result[child.tag] = child_result[child.tag]
            else:
                if child.tag not in result:  # 因为object可能有多个,所以需要放入列表里
                    result[child.tag] = []
                result[child.tag].append(child_result[child.tag])
        return {xml.tag: result}

    def coco_index(self, idx):
        """
        该方法是专门为pycocotools统计标签信息准备,不对图像和标签作任何处理
        由于不用去读取图片,可大幅缩减统计时间

        Args:
            idx: 输入需要获取图像的索引
        """
        # read xml
        xml_path = self.xml_list[idx]
        with open(xml_path) as fid:
            xml_str = fid.read()
        xml = etree.fromstring(xml_str)
        data = self.parse_xml_to_dict(xml)["annotation"]
        data_height = int(data["size"]["height"])
        data_width = int(data["size"]["width"])
        height_width = [data_height, data_width]
        # img_path = os.path.join(self.img_root, data["filename"])
        # image = Image.open(img_path)
        # if image.format != "JPEG":
        #     raise ValueError("Image format not JPEG")
        boxes = []
        labels = []
        iscrowd = []
        for obj in data["object"]:
            # 将所有的gt box信息转换成相对值0-1之间
            xmin = float(obj["bndbox"]["xmin"]) / data_width
            xmax = float(obj["bndbox"]["xmax"]) / data_width
            ymin = float(obj["bndbox"]["ymin"]) / data_height
            ymax = float(obj["bndbox"]["ymax"]) / data_height
            boxes.append([xmin, ymin, xmax, ymax])
            labels.append(self.class_dict[obj["name"]])
            iscrowd.append(int(obj["difficult"]))

        # convert everything into a torch.Tensor
        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        labels = torch.as_tensor(labels, dtype=torch.int64)
        iscrowd = torch.as_tensor(iscrowd, dtype=torch.int64)
        height_width = torch.as_tensor(height_width, dtype=torch.int64)
        image_id = torch.tensor([idx])
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])

        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd
        target["height_width"] = height_width

        return target

    @staticmethod
    def collate_fn(batch):
        images, targets = tuple(zip(*batch))
        # images = torch.stack(images, dim=0)
        #
        # boxes = []
        # labels = []
        # img_id = []
        # for t in targets:
        #     boxes.append(t['boxes'])
        #     labels.append(t['labels'])
        #     img_id.append(t["image_id"])
        # targets = {"boxes": torch.stack(boxes, dim=0),
        #            "labels": torch.stack(labels, dim=0),
        #            "image_id": torch.as_tensor(img_id)}

        return images, targets

3、分割任务

深度学习基础知识数据 数据预处理transforms流程讲解_第11张图片
定义VOCSegmentation类的py文件

import os

import torch.utils.data as data
from PIL import Image


class VOCSegmentation(data.Dataset):
    def __init__(self, voc_root, year="2012", transforms=None, txt_name: str = "train.txt"):
        super(VOCSegmentation, self).__init__()
        assert year in ["2007", "2012"], "year must be in ['2007', '2012']"
        root = os.path.join(voc_root, "VOCdevkit", f"VOC{year}")
        assert os.path.exists(root), "path '{}' does not exist.".format(root)
        image_dir = os.path.join(root, 'JPEGImages')
        mask_dir = os.path.join(root, 'SegmentationClass')

        txt_path = os.path.join(root, "ImageSets", "Segmentation", txt_name)
        assert os.path.exists(txt_path), "file '{}' does not exist.".format(txt_path)
        with open(os.path.join(txt_path), "r") as f:
            file_names = [x.strip() for x in f.readlines() if len(x.strip()) > 0]

        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
        self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names]
        assert (len(self.images) == len(self.masks))
        self.transforms = transforms

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is the image segmentation.
        """
        img = Image.open(self.images[index]).convert('RGB')
        target = Image.open(self.masks[index])    # gqr:读取的mask文件是一个单通道的掩膜数据

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target

    def __len__(self):
        return len(self.images)

    @staticmethod
    def collate_fn(batch):
        images, targets = list(zip(*batch))
        batched_imgs = cat_list(images, fill_value=0)   # gqr:将不同尺寸的数据打包桶相同尺寸大小的tensor,有利于加速训练
        batched_targets = cat_list(targets, fill_value=255)   # gqr:将不同尺寸的数据打包桶相同尺寸大小的tensor,有利于加速训练
        return batched_imgs, batched_targets


def cat_list(images, fill_value=0):
    # 计算该batch数据中,channel, h, w的最大值
    max_size = tuple(max(s) for s in zip(*[img.shape for img in images]))
    batch_shape = (len(images),) + max_size
    batched_imgs = images[0].new(*batch_shape).fill_(fill_value)
    for img, pad_img in zip(images, batched_imgs):
        pad_img[..., :img.shape[-2], :img.shape[-1]].copy_(img)
    return batched_imgs


# dataset = VOCSegmentation(voc_root="/data/", transforms=get_transform(train=True))
# d1 = dataset[0]
# print(d1)

重写的transforms代码:

import numpy as np
import random

import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F


def pad_if_smaller(img, size, fill=0):
    # 如果图像最小边长小于给定size,则用数值fill进行padding
    min_size = min(img.size)
    if min_size < size:
        ow, oh = img.size
        padh = size - oh if oh < size else 0
        padw = size - ow if ow < size else 0
        img = F.pad(img, (0, 0, padw, padh), fill=fill)
    return img


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class RandomResize(object):
    def __init__(self, min_size, max_size=None):
        self.min_size = min_size
        if max_size is None:
            max_size = min_size
        self.max_size = max_size

    def __call__(self, image, target):
        size = random.randint(self.min_size, self.max_size)
        # 这里size传入的是int类型,所以是将图像的最小边长缩放到size大小
        image = F.resize(image, size)
        # 这里的interpolation注意下,在torchvision(0.9.0)以后才有InterpolationMode.NEAREST
        # 如果是之前的版本需要使用PIL.Image.NEAREST
        target = F.resize(target, size, interpolation=T.InterpolationMode.NEAREST)
        return image, target


class RandomHorizontalFlip(object):
    def __init__(self, flip_prob):
        self.flip_prob = flip_prob

    def __call__(self, image, target):
        if random.random() < self.flip_prob:
            image = F.hflip(image)
            target = F.hflip(target)
        return image, target


class RandomCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image, target):
        image = pad_if_smaller(image, self.size)
        target = pad_if_smaller(target, self.size, fill=255)
        crop_params = T.RandomCrop.get_params(image, (self.size, self.size))
        image = F.crop(image, *crop_params)
        target = F.crop(target, *crop_params)
        return image, target


class CenterCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image, target):
        image = F.center_crop(image, self.size)
        target = F.center_crop(target, self.size)
        return image, target


class ToTensor(object):
    def __call__(self, image, target):
        image = F.to_tensor(image)
        target = torch.as_tensor(np.array(target), dtype=torch.int64)
        return image, target


class Normalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image, target):
        image = F.normalize(image, mean=self.mean, std=self.std)
        return image, target


你可能感兴趣的:(深度学习,人工智能)