转《Java并发编程的艺术-第8章》
1.等待多线程完成的CountDownLatch
JDk1.5提供了一个非常有用的包,Concurrent包,这个包主要用来操作一些并发操作,提供一些并发类,可以方便在项目当中傻瓜式应用。
JDK1.5以前,使用并发操作,都是通过Thread,Runnable来操作多线程;但是在JDK1.5之后,提供了非常方便的线程池(ThreadExecutorPool),主要代码由大牛Doug Lea完成,其实是在jdk1.4时代,由于java语言内置对多线程编程的支持比较基础和有限,所以他写了这个,因为实在太过于优秀,所以被加入到jdk之中;
这次主要对CountDownLatch进行系统的讲解
使用场景:比如对于马拉松比赛,进行排名计算,参赛者的排名,肯定是跑完比赛之后,进行计算得出的,翻译成Java识别的预发,就是N个线程执行操作,主线程等到N个子线程执行完毕之后,在继续往下执行。
代码示例
public static void testCountDownLatch(){
int threadCount = 10;
final CountDownLatch latch = new CountDownLatch(threadCount);
for(int i=0; i< threadCount; i++){
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("线程" + Thread.currentThread().getId() + "开始出发");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("线程" + Thread.currentThread().getId() + "已到达终点");
latch.countDown();
}
}).start();
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("10个线程已经执行完毕!开始计算排名");
}
执行结果:
线程10开始出发
线程13开始出发
线程12开始出发
线程11开始出发
线程14开始出发
线程15开始出发
线程16开始出发
线程17开始出发
线程18开始出发
线程19开始出发
线程14已到达终点
线程15已到达终点
线程13已到达终点
线程12已到达终点
线程10已到达终点
线程11已到达终点
线程16已到达终点
线程17已到达终点
线程18已到达终点
线程19已到达终点
10个线程已经执行完毕!开始计算排名
主要方法:
- void await() //当前线程等待计数器为0
- boolean await(long timeout, TimeUnit unit) //与上面的方法不同,它加了一个时间限制。
- void countDown() //计数器减1
- long getCount() //获取计数器的值
实现方式:
它的内部有一个辅助的内部类:Sync(继承至AQS)
await() 方法的实现:
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg); //加入到等待队列中
}
countDown() 方法的实现:
public void countDown() {
sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared(); //解锁
return true;
}
return false;
}
2.同步屏障CyclicBarrier
CyclicBarrier的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续运行。
CyclicBarrier简介
CyclicBarrier默认的构造方法是CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程调用await方法告诉CyclicBarrier我已经到达了屏障,然后当前线程被阻塞。示例代码如下所示。
public class CyclicBarrierTest {
static CyclicBarrier c = new CyclicBarrier(2);
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
try {
c.await();
} catch (Exception e) {
e.printStackTrace();
}
System.out.println(1);
}
}).start();
try {
c.await();
} catch (Exception e) {
e.printStackTrace();
}
System.out.println(2);
}
}
因为主线程和子线程的调度是由CPU决定的,两个线程都有可能先执行,所以会产生两种输出,第一种可能输出如下。
1
2
第二种可能输出如下。
2
1
如果把new CyclicBarrier(2)修改成new CyclicBarrier(3),则主线程和子线程会永远等待,因为没有第三个线程执行await方法,即没有第三个线程到达屏障,所以之前到达屏障的两个线程都不会继续执行。
CyclicBarrier还提供一个更高级的构造函数CyclicBarrier(int parties,Runnable barrier-Action),用于在线程到达屏障时,优先执行barrierAction,方便处理更复杂的业务场景
public class CyclicBarrierTest2 {
static CyclicBarrier c = new CyclicBarrier(2,new A());
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
try {
c.await();
} catch (Exception e) {
}
System.out.println(1);
}
}).start();
try {
c.await();
} catch (Exception e) {
}
System.out.println(2);
}
static class A implements Runnable {
@Override
public void run() {
System.out.println(3);
}
}
}
因为CyclicBarrier设置了拦截线程的数量是2,所以必须等代码中的第一个线程和线程A都执行完之后,才会继续执行主线程,然后输出2,所以代码执行后的输出如下。
3
1
2
CyclicBarrier可以用于多线程计算数据,最后合并计算结果的场景。例如,用一个Excel保存了用户所有银行流水,每个Sheet保存一个账户近一年的每笔银行流水,现在需要统计用户的日均银行流水,先用多线程处理每个sheet里的银行流水,都执行完之后,得到每个sheet的日均银行流水,最后,再用barrierAction用这些线程的计算结果,计算出整个Excel的日均银行流水,如代码清单8-5所示。
public class BankWaterService implements Runnable{
/**
* 创建4个屏障,处理完之后执行当前类的run方法
*/
private CyclicBarrier c = new CyclicBarrier(4, this);
/**
* 假设只有4个sheet,所以只启动4个线程
*/
private Executor executor = Executors.newFixedThreadPool(4);
/**
* 保存每个sheet计算出的银流结果
*/
private ConcurrentHashMapsheetBankWaterCount = new ConcurrentHashMap();
private void count(){
for (int i = 0; i < 4; i++) {
executor.execute(new Runnable() {
@Override
public void run() {
// 计算当前sheet的银流数据,计算代码省略
sheetBankWaterCount.put(Thread.currentThread().getName(), 1);
// 银流计算完成,插入一个屏障
try {
c.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}
});
}
}
@Override
public void run() {
int result = 0;
for (Map.Entry sheet : sheetBankWaterCount.entrySet()) {
result += sheet.getValue();
}
sheetBankWaterCount.put("result", result);
System.out.println(result);
}
public static void main(String[] args) {
BankWaterService bankWaterService = new BankWaterService();
bankWaterService.count();
}
}
使用线程池创建4个线程,分别计算每个sheet里的数据,每个sheet计算结果是1,再由BankWaterService线程汇总4个sheet计算出的结果,输出结果如下。
4
3.CyclicBarrier和CountDownLatch的区别
应用场景区别
CountDownLatch : 一个线程(或者多个), 等待另外N个线程完成某个事情之后才能执行。
CyclicBarrier : N个线程相互等待,任何一个线程完成之前,所有的线程都必须等待。
这样应该就清楚一点了,对于CountDownLatch来说,重点是那个“一个线程”, 是它在等待, 而另外那N的线程在把“某个事情”做完之后可以继续等待,可以终止。
而对于CyclicBarrier来说,重点是那N个线程,他们之间任何一个没有完成,所有的线程都必须等待。
CountDownLatch 是计数器, 线程完成一个就记一个, 就像 报数一样, 只不过是递减的.
而CyclicBarrier更像一个水闸, 线程执行就想水流, 在水闸处都会堵住, 等到水满(线程到齐)了, 才开始泄流.
使用区别
CountDownLatch的计数器只能使用一次,而CyclicBarrier的计数器可以使用reset()方法重置。所以CyclicBarrier能处理更为复杂的业务场景。例如,如果计算发生错误,可以重置计数器,并让线程重新执行一次。
CyclicBarrier还提供其他有用的方法,比如getNumberWaiting方法可以获得Cyclic-Barrier阻塞的线程数量。isBroken()方法用来了解阻塞的线程是否被中断
4.控制并发线程数的Semaphore
Semaphore(信号量)是用来控制同时访问特定资源的线程数量,它通过协调各个线程,以保证合理的使用公共资源。
应用场景
Semaphore可以用于做流量控制,特别是公用资源有限的应用场景,比如数据库连接。假如有一个需求,要读取几万个文件的数据,因为都是IO密集型任务,我们可以启动几十个线程并发地读取,但是如果读到内存后,还需要存储到数据库中,而数据库的连接数只有10个,这时我们必须控制只有10个线程同时获取数据库连接保存数据,否则会报错无法获取数据库连接。这个时候,就可以使用Semaphore来做流量控制
public class SemaphoreTest {
private static final int THREAD_COUNT = 30;
private static ExecutorService threadPool = Executors.newFixedThreadPool(THREAD_COUNT);
private static Semaphore s = new Semaphore(10);
public static void main(String[] args) {
for (int i = 0; i
}
在代码中,虽然有30个线程在执行,但是只允许10个并发执行。Semaphore的构造方法Semaphore(int permits)接受一个整型的数字,表示可用的许可证数量。Semaphore(10)表示允许10个线程获取许可证,也就是最大并发数是10。Semaphore的用法也很简单,首先线程使用Semaphore的acquire()方法获取一个许可证,使用完之后调用release()方法归还许可证。还可以用tryAcquire()方法尝试获取许可证。
Semaphore还提供一些其他方法,具体如下。
- intavailablePermits():返回此信号量中当前可用的许可证数。
- intgetQueueLength():返回正在等待获取许可证的线程数。
- booleanhasQueuedThreads():是否有线程正在等待获取许可证。
- void reducePermits(int reduction):减少reduction个许可证,是个protected方法。
- Collection getQueuedThreads():返回所有等待获取许可证的线程集合,是个protected方法。