ThreadPoolExecutor 线程池

阿里巴巴代码规范:
【强制】线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式,
这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。
说明:Executors各个方法的弊端:
1)newFixedThreadPool和newSingleThreadExecutor:
  主要问题是堆积的请求处理队列可能会耗费非常大的内存,甚至OOM。
2)newCachedThreadPool和newScheduledThreadPool:
  主要问题是线程数最大数是Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至OOM。

execute方法

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();  // 获取当前线程的状态 线程的运行状态+线程的数量
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

execute 是提交线程时会调用的方法,他是ThreadPoolExecutor中最重要的方法。
ctl.get() 获取当前线程的状态 线程的运行状态+线程的数量,这里作者把一个int类型数据的高三位表示为当前线程的运行状态,低29位表示为线程的数量

    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

runStateof 获取当前线程的运行状态
workerCountof 获取线程的数量
corePoolSize 实例化线程池时所定义的核心线程的数量
当当前线程的数量小于核心线程的数量时 跳入addWorker方法

 private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c); // 获取当前线程的运行状态

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty())) //判断当前线程运行的状态是否不为runing状态,如果不是,则跳出循环
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize)) // 判断当前线程是否大于核心线程数(或大于最大线程数量,根据core判断要和那个变量进行对比)
                    return false;
                if (compareAndIncrementWorkerCount(c)) // 尝试对线程数量变量进行加运算,如果成功,则跳出循环
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask); 实例化一个worker对象,把提交的线程任务set到worker属性里面
            final Thread t = w.thread; // 安全检查,其实还是获取worker自己
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock(); //上锁,因为workers 是个hashset对象,是线程不安全的
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get()); // 获取当前线程的运行状态

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable // 判断worker是否已经在运行
                            throw new IllegalThreadStateException();
                        workers.add(w); //向workers添加值
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start(); 调用worker的run方法,run方法又调用了worker里面的runworker方法
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

addWorker方法的大致流程为:
1.获取当前线程的运行状态
2.判断当前线程运行的状态是否不为runing状态,如果不是,则跳出循环
3.判断当前线程是否大于核心线程数(或大于最大线程数量,根据core判断要和那个变量进行对比)
4.尝试对线程数量变量进行加运算,如果成功,则跳出循环
5.实例化一个worker对象,把提交的线程任务set到worker属性里面
6.向workers添加worker对象
7.调用worker的run方法,run方法又调用了worker里面的runworker方法

    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) { // 获取worker里面的firstTask属性的值,如果为空,则调用getTask方法(线程能保活的关键)
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run(); //调用firstTask里面的run方法
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

runWorker流程大致为:

  1. 获取worker里面的firstTask属性的值,如果为空,则调用getTask方法,看队列内是否有线程。(线程能保活的关键,如果线程没有超时,则一直处于自旋状态,不跳出循环)
    2.调用firstTask里面的run方法
 private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
// 超时了,并且队列为空,则向外返回空值
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();// 线程允不允许超时,如果允许,则从队列中取出线程,如果没有 则等待一段时间(keepAliveTime)
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

你可能感兴趣的:(ThreadPoolExecutor 线程池)