Visual Studio 2022配置OpenGL CMake项目

目录

  • 下载准备
  • 配置流程
  • 详细配置流程
      • 0、软件下载、文件夹新建
      • 1、glfw文件下载和编译
      • 2、glad在线下载
      • 3、新建CMake空白项目
      • 4、CMake配置和测试
  • 参考

下载准备

软件:visual studio 2022、Cmake
:glfw、glad

配置流程

概述一下配置的流程。
0、提前下载好visual studio 2022和Cmake。
1、下载glfw的source文件,用Cmake编译该文件,这一步会生成glfw.lib文件。
2、来到glad网站进行在线下载,输入配置,下载glad的zip文件。
3、在visual studio创建空白Cmake项目,在项目里创建三个文件夹:src、lib、include。将glad.c复制进src文件夹,将glfw.lib复制进lib文件夹,将glad和glfw中的头文件复制进include文件。
4、配置CMakelists文件,添加测试代码,然后为CMakelists重新生成缓存,编译调试。

详细配置流程

0、软件下载、文件夹新建

vs和Cmake的下载不多赘述。在下载glfw包之前,可以新建一个OpenGL的文件夹,然后在里面新建Origin文件夹,用于存放我们的glfw、glad源文件。
在这里插入图片描述

1、glfw文件下载和编译

Visual Studio 2022配置OpenGL CMake项目_第1张图片
首先进入glfw的官方网站,下载source package,我这里下载的版本是glfw-3.3.7。解压这个包,打开Cmake gui进行编译配置。在cmake gui里输入解压包的地址和输出地址,然后点击Configure,如下图中的默认选项即可。
Visual Studio 2022配置OpenGL CMake项目_第2张图片
下图为CMake中对应的操作顺序。
Visual Studio 2022配置OpenGL CMake项目_第3张图片
打开输出文件中的vs工程文件,点击本地调试器进行编译。
Visual Studio 2022配置OpenGL CMake项目_第4张图片
可以在src->Debug文件夹里看到glfw3.lib文件,这个文件待会要用。

2、glad在线下载

进入glad的在线网站,可以按照下图所示的内容进行配置,GL的版本只要选择一个3.3以上的版本即可,Profile处要选择Core模式。
Visual Studio 2022配置OpenGL CMake项目_第5张图片
点击GENERATE后会弹出另外一个网页,下载其中的glad.zip即可。

3、新建CMake空白项目

此时可以对上述下载的文件进行整理,我现在的文件目录里有这些东西。
Visual Studio 2022配置OpenGL CMake项目_第6张图片
在外部新建三个文件夹:src、lib、include。
将Origin->glad->src->glad.c复制到src文件夹中;把Origin->Build->src->Debug->glfw3.lib复制到lib文件夹中;将Origin->glfw-3.3.7->include->GLFW文件夹复制到include文件夹中,将Origin->glad->include中的glad文件夹和KHR文件夹复制到include文件夹中。

接下来进行CMake项目的创建。在创建新项目里选择创建CMake项目。
Visual Studio 2022配置OpenGL CMake项目_第7张图片
然后点击创建。
Visual Studio 2022配置OpenGL CMake项目_第8张图片
将我们之前新建的src、lib、include文件夹复制进项目目录,复制完后的项目结构如下所示。
Visual Studio 2022配置OpenGL CMake项目_第9张图片

4、CMake配置和测试

修改CMakelists文件,修改后内容如下所示。

cmake_minimum_required (VERSION 3.8)
project ("OpenGLTest")
include_directories(${PROJECT_SOURCE_DIR}/include)
link_directories(lib)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY_DEBUG ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY_RELEASE ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${CMAKE_BINARY_DIR}/bin)
file(COPY "lib" DESTINATION ${CMAKE_BINARY_DIR})
file(GLOB_RECURSE  src_dir "./src/*.c" "./src/*.h" "./src/*.cpp" )
add_executable (OpenGLTest "CMakeProject1.cpp" "CMakeProject1.h" ${src_dir})
target_link_libraries(OpenGLTest glfw3  opengl32)

在file(GLOB_RECURSE src_dir “./src/.c""./src/.h”“./src/*.cpp”)配置代码中,把目录下c文件加入到src_dir中,这一步主要是把glad.c文件地址整合到src_dir中,然后编写主函数代码。target_link_libraries 会从lib目录和系统目录下搜索相应的库(glfw3 opengl32)。

复制用于测试的OpenGL代码,代码如下所示。

#include 
#include 

#include 

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow* window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

const char* vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 aPos;\n"
"void main()\n"
"{\n"
"   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n"
"}\0";
const char* fragmentShaderSource = "#version 330 core\n"
"out vec4 FragColor;\n"
"void main()\n"
"{\n"
"   FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n"
"}\n\0";

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }


    // build and compile our shader program
    // ------------------------------------
    // vertex shader
    unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    glCompileShader(vertexShader);
    // check for shader compile errors
    int success;
    char infoLog[512];
    glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // fragment shader
    unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    glCompileShader(fragmentShader);
    // check for shader compile errors
    glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // link shaders
    unsigned int shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram);
    // check for linking errors
    glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
    if (!success) {
        glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
    }
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float vertices[] = {
        -0.5f, -0.5f, 0.0f, // left  
         0.5f, -0.5f, 0.0f, // right 
         0.0f,  0.5f, 0.0f  // top   
    };

    unsigned int VBO, VAO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    // bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).
    glBindVertexArray(VAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    // note that this is allowed, the call to glVertexAttribPointer registered VBO as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind
    glBindBuffer(GL_ARRAY_BUFFER, 0);

    // You can unbind the VAO afterwards so other VAO calls won't accidentally modify this VAO, but this rarely happens. Modifying other
    // VAOs requires a call to glBindVertexArray anyways so we generally don't unbind VAOs (nor VBOs) when it's not directly necessary.
    glBindVertexArray(0);


    // uncomment this call to draw in wireframe polygons.
    //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        // draw our first triangle
        glUseProgram(shaderProgram);
        glBindVertexArray(VAO); // seeing as we only have a single VAO there's no need to bind it every time, but we'll do so to keep things a bit more organized
        glDrawArrays(GL_TRIANGLES, 0, 3);
        // glBindVertexArray(0); // no need to unbind it every time 

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteProgram(shaderProgram);

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow* window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

然后在右侧右键点击CMakeLists.txt,选择删除缓存并重新配置。
点击运行,如果看到下面的三角形,说明配置成功。
Visual Studio 2022配置OpenGL CMake项目_第10张图片

参考

OpenGL使用VS2017和CMake配置GLFW和GLAD
cmake搭建glad+glfw环境; IDE: visual studio 2019

你可能感兴趣的:(图形学,visual,studio,图形渲染,c++)