数据结构 快速排序(Quick Sort) 详解 附C++代码实现:

目录

 

简介:

算法描述:

代码实现:

总结:


简介:

快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。不稳定,时间复杂度和空间复杂度都是O(N*logN)。

算法描述:

该方法的基本思想是:

1.先从数列中取出一个数作为基准数。

2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。

3.再对左右区间重复第二步,直到各区间只有一个数。

下面的算法解释更生动:

 

方法其实很简单:分别从初始序列“6  1  2 7  9  3  4  5 10  8”两端开始“探测”。先从右往左找一个小于6的数,再从左往右找一个大于6的数,然后交换他们。这里可以用两个变量i和j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。让哨兵j指向序列的最右边(即j=10),指向数字8。

 

       首先哨兵j开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵j先出动,这一点非常重要(请自己想一想为什么)。哨兵j一步一步地向左挪动(即j--),直到找到一个小于6的数停下来。接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。

 

 

       现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下。

        6  1  2  5  9 3  4  7  10  8

 

        到此,第一次交换结束。接下来开始哨兵j继续向左挪动(再友情提醒,每次必须是哨兵j先出发)。他发现了4(比基准数6要小,满足要求)之后停了下来。哨兵i也继续向右挪动的,他发现了9(比基准数6要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下。

        6  1  2 5  4  3  9  7 10  8

 

        第二次交换结束,“探测”继续。哨兵j继续向左挪动,他发现了3(比基准数6要小,满足要求)之后又停了下来。哨兵i继续向右移动,糟啦!此时哨兵i和哨兵j相遇了,哨兵i和哨兵j都走到3面前。说明此时“探测”结束。我们将基准数6和3进行交换。交换之后的序列如下。

        3  1 2  5  4  6  9 7  10  8

 

        到此第一轮“探测”真正结束。此时以基准数6为分界点,6左边的数都小于等于6,6右边的数都大于等于6。回顾一下刚才的过程,其实哨兵j的使命就是要找小于基准数的数,而哨兵i的使命就是要找大于基准数的数,直到i和j碰头为止。

 

现在已经确定了6的位置,继续拆分6左边和右边的序列,直到不可拆分出新的子序列为止。最终将会得到这样的序列,如下。

        1  2  3 4  5  6  7  8 9  10

 

        到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下整个算法的处理过程。

来自:https://blog.csdn.net/adusts/article/details/80882649

 

代码实现:

#include
#include
#include
using namespace std;
#define n 10000
void QuickSort(int a[],int l,int r)
{
	if(lx)
			  j--;
			if(i

测试结果:

 数据结构 快速排序(Quick Sort) 详解 附C++代码实现:_第1张图片

 

数据结构 快速排序(Quick Sort) 详解 附C++代码实现:_第2张图片

总结:

不稳定,时间复杂度和空间复杂度都是O(N*logN)。

快速排序之所比较快,因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样每次只能在相邻的数之间进行交换,交换的距离就大的多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的都是O(N2),它的平均时间复杂度为O(NlogN)。

小伙伴们,如果还看不懂,在评论区留言,乐意解答

你可能感兴趣的:(数据结构,数据结构,数据结构,快速排序)