- SSE vs WebSocket,谁更适合实时文本传输?
A__tao
websocket网络协议网络
引言SSE和WebSocket是常见的实时数据传输技术,在在线文本传输工具中,如何选择合适的方案?技术对比特性SSEWebSocket连接方式单向(服务器→客户端)双向(客户端↔服务器)适用场景消息推送、实时更新双向交互、多用户协作兼容性兼容HTTP/2,支持大部分浏览器需要WebSocket支持复杂度简单易用需要管理连接状态选择建议仅需服务器推送→选择SSE(轻量、兼容性好)。需要双向通信→选择
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- 算法题(98):大数加法
被AI抢饭碗的人
算法题算法
审题:本题需要我们解决大数加法,大数直接运算会超出范围,所以我们需要转换成字符串一位位进行计算思路:方法一:高精度加法我们将两个大数的每一个位分别计算,然后头插到answer字符串中即可解题:1.由于我们是从个位开始计算,而字符串的存储size-1的位置才是个位的位置,我们就把j和i初始化为size-1.2.当有进位或两个大数还有数据的时候,我们进行大数加法。3.字符串的头插可以使用=和+号实现,
- Java多线程与并发编程实战——从基础到进阶
AI天才研究院
Python实战Java实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介互联网企业都在大力拓展自己的业务,而新的技术革命也带来了海量的数据量,因此,单机并发处理能力已经无法满足现代信息时代对高速数据的需求。大数据和云计算带来的分布式系统架构,让单台计算机不仅能够执行单个任务,而且可以横向扩展处理大量任务。在这种情况下,如何充分利用多核CPU、共享内存等资源并发地处理多项任务就成为现代系统设计者们必备技能之一。本书将以实操为导向,全面
- 2025年移动端技术探索-DeepSeek这么说
轻口味
移动端移动端AndroidHarmonyOSHarmonyOSNextiOSAIDeepSeek
随着移动互联网的逐步成熟,从增量市场向存量市场过度,对于开发的需求量大减,技术层面和业务层面的的需求量都很乏力。而且随着AI的发展,知识门槛基本消失,技能门槛也在缩短,从移动互联网向AI时代过度期间,更加比拼业务比拼创意,希望用AI重新改造某个行业。移动端方向整个24年最大的需求量是鸿蒙,2024年被称为“原生鸿蒙关键年”,华为联合头部企业(如中国移动、美团、百度等)加速构建独立生态,预计2024
- 基于深度学习的个性化新闻推荐系统设计与实现计算机毕设
sj52abcd
深度学习课程设计人工智能毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着互联网技术的发展和普及,人们越来越依赖互联网获取信息。然而,随着信息量的不断增加,用户在查找新闻时面临着信息过载的问题。为了解决这个问题,个性化新闻推荐系统被广泛应用。个性化新闻推荐系
- 如何用deepseek炒股
Real Man★
python机器学习人工智能
使用DeepSeek进行炒股的核心思路是利用其强大的数据处理和预测能力,辅助投资决策。以下是具体的应用方法和步骤:一、数据收集与处理获取市场数据股票数据:通过API(如Tushare、YahooFinance)获取历史股价、成交量、财务数据等。新闻与舆情:使用DeepSeek的NLP能力分析新闻、社交媒体和公告,提取市场情绪和事件影响。宏观经济数据:收集GDP、利率、通胀等数据,分析其对股市的影响
- 久违了,那书本的墨香!--- 闻华为新宇兄加班过劳致死有感
weixin_30765505
毕业两年了,如果不是试着去回顾,不会感觉时间流淌的这么快!我从来不否认自己怀旧,也时常在闲暇之余莫名地怀念那过去的人、景和事,尤其是那种在书海中浸淫的味道,那些纸面散发出的墨香,常引我心醉而神往!可是如今却成了那匆匆忙忙上班族中的普通一员,美其名曰:“白领”,实际上只不过去自欺欺人、聊以自慰的“头衔”罢了。每天超过十二小时面对电脑,专业人士提醒的“辐射量”我们自是无暇统计的,而眼前由英文字母、数字
- KNN算法性能优化技巧与实战案例
可问 可问春风
算法性能优化
KNN算法性能优化技巧与实战案例K最近邻(KNN)在分类和回归任务中表现稳健,但其计算复杂度高、内存消耗大成为IT项目中的主要瓶颈。以下从算法优化、数据结构、工程实践三方面深入解析性能提升策略,并附典型应用案例。一、核心性能瓶颈维度挑战描述计算复杂度单次预测需计算全部训练样本距离,时间复杂度为(n=样本数,d=特征维度)内存占用需全量存储训练数据,大规模数据集难以加载高维灾难高维数据中距离计算失去
- 基于人工智能的智能视频内容分析系统
小彭律师
python
基于人工智能的智能视频内容分析系统系统功能1.视频数据预处理降噪与滤波:去除视频画面中的噪点和干扰画质增强:调整亮度、对比度和色彩平衡关键帧提取:减少数据量,提取关键信息2.目标识别检测基于深度学习模型(YOLO、FasterR-CNN等)识别多种目标类型(人、车辆、物品等)适应不同光照、角度和遮挡情况输出目标位置、类别和置信度3.行为分析研判基于时序模型(LSTM、3D-CNN等)分析目标动作规
- element UI 2.15.13和 vue2.0表格勾选回显
前端vue.js
弹窗回显勾选的项关键代码//函数名叫什么无所谓,函数的参数值data是要回显表格的所有数据//数据改变放在this.$nextTick中handleSelection(data){this.$nextTick(()=>{//selectedArr是所有需要勾选的项的集合constselectedArr=data.filter(item=>item.userId);selectedArr.forEa
- 多线程到底重不重要?
Vic2334
JAVAjava开发语言
我们先说一下为什么要讲多线程和高并发?原因是,你想拿到一个更高的薪水,在面试的时候呈现出了两个方向的现象:第一个是上天项目经验高并发缓存大流量大数据量的架构设计第二个是入地各种基础算法,各种基础的数据结构JVMOS线程IO等内容多线程和高并发,就是入地里面的内容。基本概念我们先从线程的基本概念开始,给大家复习一下,不知道有多少同学是基础不太好,说什么是线程都不知道的,如果这样的话,花时间去补初级内
- 你的AI客服为何总抓不住客户核心诉求?(附特征优化方案)
人工智能
1特征工程的意义nlp任务中,原始文本经数值映射后形成的词向量序列,难充分表达语言深层语义特征。就需引入文本特征增强技术:语义信息补全:突破单词语义局限,捕获词序关联特征模型适配优化:构建符合算法输入规范的矩阵结构评估指标提升:通过特征增强直接影响模型准确率、召回率等核心KPI如电商评论情感分析场景,单纯用词频特征可能导致"这个手机质量差得惊人"和"这个手机质量惊人地差"被判定为相同语义,此时bi
- AI在投标管理中的智能化应用设计方案
警世龙
开发记录人工智能自然语言处理深度学习人工智能AI编程
一、系统设计目标E={e1,e2,e3}其中{e1:标书准备效率提升40%e2:中标率提升25%e3:人工审核工作量降低60%E=\{e_1,e_2,e_3\}\quad\text{其中}\quad\begin{cases}e_1:\text{标书准备效率提升40\%}\\e_2:\text{中标率提升25\%}\\e_3:\text{人工审核工作量降低60\%}\end{cases}E={e1,
- sql获取某列出现频次最多的值_业务硬核SQL集锦
金渡江
sql获取某列出现频次最多的值
戳上方蓝字关注我这两年学会了跑sql,当时有很多同学帮助我精进了这个技能,现在也写成一个小教程,反馈给大家。适用对象:工作中能接触到sql查询平台的业务同学(例如有数据查询权限的产品与运营同学)适用场景:查询hive&mysql上的数据文档优势:比起各类从零起步的教程教材,理解门槛低,有效信息密度大,可以覆盖高频业务场景。文末有一些常见的小技巧,希望帮助同学们提升工作效率。SQL的基础结构:做一个
- Manus 一码难求,MetaGPT、OpenManus、Camel AI 会是替代方案吗?
全干程序员demo
技术热文人工智能
Manus一码难求,MetaGPT、OpenManus、CamelAI会是替代方案吗?一、Manus的现象与问题Manus作为一款号称“全球首个通用AI智能体”的产品,凭借其强大的功能和新颖的营销策略迅速走红。然而,其封闭的邀请码机制和高昂的使用门槛,让普通开发者望而却步。Manus的邀请码被炒至高价,甚至出现账号冻结等现象,这引发了用户对其技术壁垒和实际应用价值的质疑。二、MetaGPT、Ope
- 程序员必看!DeepSeek全栈开发指南:从代码生成到分布式训练的黑科技解析
AI创享派
后端
一、DeepSeek技术新突破:程序员必须掌握的MoE架构实战2025年2月25日,DeepSeek开源了专为MoE模型设计的DeepEP通信库,这项技术革新直接影响了分布式训练和推理效率。该库支持FP8精度与NVLink/RDMA技术,吞吐量提升3倍以上,特别适合处理千亿级参数的分布式任务。对于后端工程师而言,DeepEP的以下特性值得关注:计算-通信重叠机制:通过回调函数实现GPU资源动态分配
- Redis 常用数据类型
27xixi
java技术栈redis数据库缓存
Redis常用数据类型的详细介绍及其典型应用场景:String(字符串)描述:最基本的数据类型,可存储文本、数字或二进制数据(最大512MB)。常用命令:SETkeyvalue:设置值GETkey:获取值INCRkey:将值自增1(原子性操作)EXPIREkeyseconds:设置过期时间应用场景:缓存简单键值对(如用户会话、配置项)。计数器(如文章阅读量、库存扣减)。分布式锁(结合SETNX命令
- 发布支持TS的npm包
努力的白熊
项目必备技术npm前端node.js
你现在有这么一个包,已经将他发布在npm上了,周下载量也还比较可观。美中不足的就是,这个包之前使用js写的,现在你想增加TS类型,提升用户使用体验,那么你现在可以做以下几个步骤1.在你的包的根目录下创建一个类型定义文件(.d.ts文件)。例如,index.d.ts。在这个文件中,你需要声明所有导出的类型和函数。//index.d.ts//这里需要注意'your-package-name'需要和你p
- TensorRT-LLM保姆级教程-快速入门
大模型八哥
笔记agiai大模型ai大模型LLMTransformer
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。另外,我撰写的大模型相关的博客及配套代码均整理放置在Github,有需要的朋友自
- 论单调队列优化DP
VU-zFaith870
c++动态规划推荐算法
前情提要,参考资料:单调队列优化DP(超详细!!!)-endl\n-博客园【动态规划】选择数字(单调队列优化dp)_哔哩哔哩_bilibili背景:最近作者快被DP逼疯了,写篇博客做记录。以下是对各DP的原理阐释:单调队列通过队列元素的吸入与弹出,形成单调性的结构,使算法能够进行线性处理,大大优化了时间复杂度。接下来讲解单调队列在区间DP、背包DP、树形DP还有数位DP中的应用:1.单调队列优化区
- 数据处理的革命性引擎
绿算技术
DPU架构介绍硬件工程科技缓存
随着数据量的爆炸式增长和计算需求的多样化,传统的CPU和GPU已经无法完全满足现代数据中心和高性能计算的需求。在这样的背景下,DPU(DataProcessingUnit,数据处理单元)应运而生。DPU是一种专为数据处理和网络加速设计的处理器,正在成为数据中心和云计算架构中的重要组成部分。接下来,由绿算技术与大家一起学习DPU有哪些功能、技术、原理等等内容。DPU的功能:数据处理的“全能选手”DP
- JVM性能调优实战:从理论到线上问题排查
SuperMale-zxq
项目实战javapythonc++jvmjava-ee
JVM性能调优实战:从理论到线上问题排查线上系统突然变慢,CPU飙升,内存告警,业务超时……面对这些危机时刻,你是束手无策还是胸有成竹?本文将带你掌握JVM性能调优的核心方法,从理论到实战,解决真实环境中的性能难题。为什么大多数JVM调优都失败了?某电商平台的"双11"大促活动,系统突然响应缓慢,交易量锐减。运维团队紧急扩容,开发团队调整GC参数,架构师建议重启服务……一系列"标准操作"后,系统性
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 外呼系统破局电话管控:AI电销机器人合规运营实战指南
ai_vx_3307623172
WX_3307623172AI机器人外呼中心人工智能机器人云计算语音识别服务器开源软件
随着运营商对电话卡管控日趋严格,某金融科技公司曾因单日外呼超限导致80%号码被封——这一案例暴露出AI电销机器人在效率与合规间的矛盾。但数据显示,采用合规策略的企业外呼接通率仍能保持38%以上,关键在于建立适配监管环境的智能外呼体系。一、破解封号困局的三大核心策略1.运营商白名单通道接入三大运营商均开放企业智能外呼专线,这类线路具备免封号特性。某教育机构接入电信AI-PaaS平台后,日均外呼量稳定
- 深入理解 GPU 渲染加速与合成层(Composite Layers)
一、前端视角下的GPU加速1.CPU与GPU的协作模式在前端渲染流程中,GPU加速通过硬件并行计算能力显著提升图形处理效率。传统浏览器渲染依赖CPU处理DOM解析、样式计算和布局,但CPU的串行处理模式在处理大规模图形数据(如复杂动画、3D变换、高清图像)时易成为性能瓶颈。GPU的介入解决了这一核心矛盾:流处理器核心并行计算:GPU拥有数千个小型核心,可同时处理大量像素数据,例如同时对元素的所有像
- 如何进行OceanBase 运维工具的部署和表性能优化
oceanbase
随着OceanBase数据库应用的日益深入,数据量不断攀升,单个表中存储数百万乃至数千万条数据的情况变得愈发普遍。因此,部署专门的运维工具、实施针对性的表性能优化策略,以及加强指标监测工作,都变得更为重要。以下为基于我们的使用场景,所采取的一些部署和优化措施分享。一、OCP部署升级1.OCP升级(1)4.2.1BP1升级到4.2.2,本来以为毫无波澜但是下载完毕一键包并完成前期准备工作启动后发现无
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- 模型蒸馏:从复杂到精简,AI技术的“瘦身”秘籍
lmtealily
人工智能
引言在人工智能的浪潮中,大型模型如BERT、GPT系列等在自然语言处理(NLP)、计算机视觉(CV)等领域取得了显著的成果。然而,这些“庞然大物”通常拥有数十亿甚至数千亿个参数,计算和存储成本极高,难以部署到资源受限的设备上。为了解决这一问题,模型蒸馏技术应运而生。模型蒸馏是一种将大型复杂模型的知识迁移到小型简单模型的技术,旨在保持高性能的同时大幅减少模型的参数量和计算复杂度。本文将带你深入了解模
- MySQL 全文搜索 (FULLTEXT) vs 合并字段模糊查询 (LIKE) 对比
曹天骄
mysql数据库
在MySQL中,使用FULLTEXT索引通常比将多个字段合并到一个新字段(如search_text)中进行模糊查询更快,尤其是在数据量较大时。以下是详细对比:1.FULLTEXT索引的优势专门优化:FULLTEXT索引是为全文搜索设计的,能够高效处理文本匹配。分词搜索:FULLTEXT支持分词搜索(基于空格或特定字符),可以快速定位关键词。性能更好:对于大文本字段或多字段联合搜索,FULLTEXT
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分