【网络基础】——传输层

目录

前言 

传输层

端口号

端口号范围划分

知名端口号

进程与端口号的关系

netstat

UDP协议

UDP协议位置

UDP协议格式

UDP协议特点

面向数据报

UDP缓冲区

UDP的使用注意事项

基于UDP的应用层协议        

TCP协议

TCP简介 

TCP协议格式 

确认应答机制(ACK)

序号和确认序号

确认应答机制

超时重传机制

流量控制

16位窗口大小

连接管理机制

TCP报头中的6个标志位

三次握手

四次挥手

滑动窗口

拥塞控制

延迟应答

捎带应答

基于TCP的应用层协议


前言 

【网络基础】——传输层_第1张图片

本文将要介绍网络通信协议分层中的传输层,在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责接收上层应用层当中用户想要传输的数据,加以打包处理后传送数据,并且确定数据已被送达并接收

传输层

在学习HTTP等应用层协议中时,为了便于理解,可以简单的认为HTTP协议是将请求和响应直接发送到了网络当中。但实际应用层需要先将数据交给传输层,由传输层对数据做进一步处理后再将数据继续向下进行交付,该过程贯穿整个网络协议栈,最终才能将数据发送到网络当中。

传输层负责可靠性传输,确保数据能够可靠地传送到目标地址。为了方便理解,在学习传输层协议时也可以简单的认为传输层协议是将数据直接发送到了网络当中。

端口号

 端口号的作用

端口号(Port)标识一个主机上进行网络通信的不同的应用程序。当主机从网络中获取到数据后,需要自底向上进行数据的交付,而这个数据最终应该交给上层的哪个应用处理程序,就是由该数据当中的目的端口号来决定的。

从网络中获取的数据在进行向上交付时,在传输层就会提取出该数据对应的目的端口号,进而确定该数据应该交付给当前主机上的哪一个服务进程。

【网络基础】——传输层_第2张图片因此端口号是属于传输层的概念的,在传输层协议的报头当中就会包含与端口相关的字段。

在TCP/IP协议中, 用 "源IP", "源端口号", "目的IP", "目的端口号", "协议号" 这样一个五元组来标识一个通信(可以通过netstat -n查看)

【网络基础】——传输层_第3张图片

端口号范围划分

端口号的长度是16位,因此端口号的范围是0~65535;

  • 0 - 1023:知名端口号, HTTP, FTP, SSH等这些广为使用的应用层协议, 他们的端口号都是固定的。
  • 1024 - 65535:操作系统动态分配的端口号. 客户端程序的端口号, 就是由操作系统从这个范围分配的。

知名端口号

有些服务器是非常常用的,这些服务器的端口号一般都是固定的:

  • ssh服务器,使用22端口。
  • ftp服务器,使用21端口。
  • telnet服务器,使用23端口。
  • http服务器,使用80端口。
  • https服务器,使用443端口。

在/etc/services文件中记录了网络服务名和它们对应使用的端口号以及协议。 

【网络基础】——传输层_第4张图片【注意】我们自己写服务器程序使用端口号时, 要避开这些知名端口号。
 

进程与端口号的关系

要想明白进程与端口号之间的关系,就要弄清楚下面两个问题。

一个端口号是否可以被多个进程绑定?

 一个端口号绝对不能被多个进程绑定,因为端口号的作用就是唯一标识一个进程,如果绑定一个已经被绑定的端口号,就会出现绑定失败的问题。

一个进程是否可以绑定多个端口号? 

一个进程是可以绑定多个端口号的,这与“端口号必须唯一标识一个进程”是不冲突的,只不过现在这多个端口唯一标识的是同一个进程罢了。

我们限制的是从端口号到进程的唯一性,而没有要求从进程到端口号也必须满足唯一性,因此一个进程是可以绑定多个端口号的。

netstat

netstat命令

netstat是一个用来查看网络状态的重要工具

其常见的选项如下:

  • n:拒绝显示别名,能显示数字的全部转换成数字。
  • l:仅列出处于LISTEN(监听)状态的服务。
  • p:显示建立相关链接的程序名。
  • t(tcp):仅显示tcp相关的选项。
  • u(udp):仅显示udp相关的选项。
  • a(all):显示所有的选项,默认不显示LISTEN相关。

查看TCP相关的网络信息时,一般选择使用nltp组合选项。

【网络基础】——传输层_第5张图片

查看UDP相关的网络信息时,一般使用nlup选择。

【网络基础】——传输层_第6张图片

如果想查看LISTEN状态以外的连接信息,可以去掉l选项,此时就会将处于其他状态的连接信息显示出来。

【网络基础】——传输层_第7张图片


UDP协议

UDP协议位置

学习UDP协议之前,首先我们要先了解UDP协议在网络通信中的位置。 

网络套接字编程时用到的各种接口,是位于应用层和传输层之间的一层系统调用接口,这些接口是系统提供的,我们可以通过这些接口搭建上层应用,比如HTTP。我们经常说HTTP是基于TCP的,实际就是因为HTTP在TCP套接字编程上搭建的。

而socket接口往下的传输层实际就是由操作系统管理的,因此UDP是属于内核当中的,是操作系统本身协议栈自带的,其代码不是由上层用户编写的,UDP的所有功能都是由操作系统完成,因此网络也是操作系统的一部分。

UDP协议格式

【网络基础】——传输层_第8张图片

  • 16位源端口号:表示数据从哪里来。
  • 16位目的端口号:表示数据要到哪里去。
  • 16位UDP长度:表示整个数据报(UDP首部+UDP数据)的长度。
  • 16位UDP检验和:如果UDP报文的检验和出错,就会直接将报文丢弃。

我们在应用层看到的端口号大部分都是16位的,其根本原因就是因为传输层协议当中的端口号就是16位的。

UDP报文分离报头和有效载荷

UDP的报头当中只包含四个字段,每个字段的长度都是16位,总共8字节。因此UDP采用的实际上是一种定长报头,UDP在读取报文时读取完前8个字节后剩下的就都是有效载荷了。

UDP交付有效载荷

UDP上层也有很多应用层协议,因此UDP必须想办法将有效载荷交给对应的上层协议,也就是交给应用层对应的进程。

应用层的每一个网络进程都会绑定一个端口号,服务端进程必须显示绑定一个端口号,客户端进程则是由系统动态绑定的一个端口号。UDP就是通过报头当中的目的端口号来找到对应的应用层进程的。

说明一下: 内核中用哈希的方式维护了端口号与进程ID之间的映射关系,因此传输层可以通过端口号得到对应的进程ID,进而找到对应的应用层进程。

UDP协议特点

UDP传输的过程就类似于寄信,其特点如下:

  • 无连接:知道对端的IP和端口号就直接进行数据传输,不需要建立连接。
  • 不可靠:没有确认机制,没有重传机制;如果因为网络故障该段无法发到对方,UDP协议层也不会给应用层返回任何错误信息。
  • 面向数据报:不能够灵活的控制读写数据的次数和数量。

注意: 报文在网络中进行路由转发时,并不是每一个报文选择的路由路径都是一样的,因此报文发送的顺序和接收的顺序可能是不同的。

面向数据报

应用层交给UDP多长的报文,UDP原样发送, 既不会拆分, 也不会合并。

当使用UDP传输100个字节的数据:

如果发送端调用一次sendto,发送100个字节,那么接收端也必须调用对应的一次recvfrom,接收100个字节;而不能循环调用10次recvfrom, 每次接收10个字节。

UDP缓冲区

  • UDP没有真正意义上的发送缓冲区。调用sendto会直接交给内核,由内核将数据传给网络层协议进行后续的传输动作。
  • UDP具有接收缓冲区。但是这个接收缓冲区不能保证收到的UDP报的顺序和发送UDP报的顺序一致;如果缓冲区满了,再到达的UDP数据就会被丢弃。
  • UDP的socket既能读,也能写,因此UDP是全双工的

为什么会有接收缓冲区没有发送缓冲区?

如果UDP没有接收缓冲区,那么就要求上层及时将UDP获取到的报文读取上去,如果一个报文在UDP没有被读取,那么此时UDP从底层获取上来的报文数据就会被迫丢弃。

一个报文从一台主机传输到另一台主机,在传输过程中会消耗主机资源和网络资源。如果UDP收到一个报文后仅仅因为上次收到的报文没有被上层读取,而被迫丢弃一个可能并没有错误的报文,这就是在浪费主机资源和网络资源。

因此UDP本身是会维护一个接收缓冲区的,当有新的UDP报文到来时就会把这个报文放到接收缓冲区当中,此时上层在读数据的时就直接从这个接收缓冲区当中进行读取就行了,而如果UDP接收缓冲区当中没有数据那上层在读取时就会被阻塞。因此UDP的接收缓冲区的作用就是,将接收到的报文暂时的保存起来,供上层读取,避免出现正确通过网络传输到的数据仅仅因为没有缓冲区被丢弃从而浪费网络资源的情况。

UDP的使用注意事项

UDP协议报头当中的UDP最大长度是16位的,因此一个UDP报文的最大长度是64K(包含UDP报头的大小)。然而64K在当今的互联网环境下,是一个非常小的数字。如果需要传输的数据超过64K,就需要在应用层进行手动分包,多次发送,并在接收端进行手动拼装。

基于UDP的应用层协议        

  • NFS: 网络文件系统
  • TFTP: 简单文件传输协议
  • DHCP: 动态主机配置协议
  • BOOTP: 启动协议(用于无盘设备启动)
  • DNS: 域名解析协议

TCP协议

TCP简介 

TCP全称为“传输控制协议(Transmission Control Protocol)”,TCP协议是当今互联网当中使用最为广泛的传输层协议,没有之一。TCP协议被广泛应用,其根本原因就是提供了详尽的可靠性保证,基于TCP的上层应用非常多,比如HTTP、HTTPS、FTP、SSH等,甚至MySQL底层使用的也是TCP。 

而上文介绍的UDP协议则是一种不可靠的协议,使用UDP时数据在长距离传输过程中就可能会出现各种各样的问题,那UDP协议这种不可靠的协议存在有什么意义呢?

不可靠不代表不可用!不可靠和可靠是两个中性词

可靠和不可靠它们描述的都是协议的特点。

  • TCP协议是可靠的协议,也就意味着TCP协议需要做更多的工作来保证传输数据的可靠,并且引起不可靠的因素越多,保证可靠的成本(时间+空间)就越高。比如数据在传输过程中出现了丢包、乱序、检验和失败等,这些都是不可靠的情况。由于TCP要想办法解决数据传输不可靠的问题,因此TCP使用起来一定比UDP复杂,并且维护成本特别高
  • UDP协议是不可靠的协议,也就意味着UDP协议不需要考虑数据传输时可能出现的问题,因此UDP无论是使用还是维护都足够简单。
  • 需要注意的是,虽然TCP复杂,但TCP的效率不一定比UDP低,TCP当中不仅有保证可靠性的机制,还有保证传输效率的各种机制。

UDP和TCP没有谁最好,只有谁最合适,网络通信时具体采用TCP还是UDP完全取决于上层的应用场景。如果应用场景严格要求数据在传输过程中的可靠性,那么就必须采用TCP协议,如果应用场景允许数据传输出现少量丢包,那么肯定优先选择UDP协议,因为UDP协议足够简单。

TCP协议格式 

TCP协议格式如下,一眼望去要比上文中UDP协议格式复杂许多,这就是保证可靠性要付出的代价。 

【网络基础】——传输层_第9张图片

TCP报头当中各个字段的含义如下:

  • 源/目的端口号:表示数据是从哪个进程来,到发送到对端主机上的哪个进程。
  • 32位序号/32位确认序号:分别代表TCP报文当中每个字节数据的编号以及对对方的确认,是TCP保证可靠性的重要字段。
  • 4位TCP报头长度:表示该TCP报头的长度,以4字节为单位。
  • 6位保留字段:TCP报头中暂时未使用的6个比特位。
  • 16位窗口大小:保证TCP可靠性机制和效率提升机制的重要字段。
  • 16位检验和:由发送端填充,采用CRC校验。接收端校验不通过,则认为接收到的数据有问题。(检验和包含TCP首部+TCP数据部分)
  • 16位紧急指针:标识紧急数据在报文中的偏移量,需要配合标志字段当中的URG字段统一使用。
  • 选项字段:TCP报头当中允许携带额外的选项字段,最多40字节。

TCP报头中的6位标志位:

  • URG:紧急指针是否有效。
  • ACK:确认序号是否有效。
  • PSH:提示接收端应用程序立刻将TCP接收缓冲区当中的数据读走。
  • RST:表示要求对方重新建立连接。我们把携带RST标识的报文称为复位报文段。
  • SYN:表示请求与对方建立连接。我们把携带SYN标识的报文称为同步报文段。
  • FIN:通知对方,本端要关闭了。我们把携带FIN标识的报文称为结束报文段。

TCP报头在内核当中本质就是一个位段类型,给数据封装TCP报头时,实际上就是用该位段类型定义一个变量,然后填充TCP报头当中的各个属性字段,最后将这个TCP报头拷贝到数据的首部,至此便完成了TCP报头的封装。

报头和有效载荷的分离

当TCP从底层获取到一个报文后,虽然TCP不知道报头的具体长度,但报文的前20个字节是TCP的基本报头,并且这20字节当中涵盖了4位的首部长度。

因此TCP是这样分离报头与有效载荷的:

  • 当TCP获取到一个报文后,首先读取报文的前20个字节,并从中提取出4位的首部长度,此时便获得了TCP报头的大小size
  • 如果size的值大于20字节,则需要继续从报文中读取size-20字节的数据,即TCP报头当中的选项字段。
  • 读完TCP报头和选项字段,剩下的有效载荷。

TCP如何决定将有效载荷交付给上层的哪一个协议?

应用层的每一个网络进程都必须绑定一个端口号。

  • 服务端进程必须显示绑定一个端口号。
  • 客户端进程由系统动态绑定一个端口号。

而TCP的报头中涵盖了目的端口号,因此TCP可以提取出报头中的目的端口号,找到对应的应用层进程,进而将有效载荷交给对应的应用层进程进行处理。

确认应答机制(ACK)

确认应答机制就是用来保证TCP通信可靠性的,实现确认应答机制用到了TCP报头当中的32位序号和32位确认序号。

序号和确认序号

怎么样才能叫做可靠?

在进行网络通信时,一方发出的数据后,它不能保证该数据能够成功被对端收到,因为数据在传输过程中可能会出现各种各样的错误,只有当收到对端主机发来的响应消息后,该主机才能保证上一次发送的数据被对端可靠的收到了,这就叫做真正的可靠。

【网络基础】——传输层_第10张图片

但TCP要保证的是双方通信的可靠性,虽然此时主机A能够保证自己上一次发送的数据被主机B可靠的收到了,但主机B也需要保证自己发送给主机A的响应数据被主机A可靠的收到了。因此主机A在收到了主机B的响应消息后,还需要对该响应数据进行响应,但此时又需要保证主机A发送的响应数据的可靠性,这样就陷入了一个死循环。

【网络基础】——传输层_第11张图片

所以严格意义上来说,互联网通信当中是不存在百分之百的可靠性的,因为双方通信时总有最新的一条消息得不到响应。但实际没有必要保证所有消息的可靠性,我们只要保证双方通信时发送的每一个核心数据都有对应的响应就可以了。而对于一些无关紧要的数据(比如响应数据),我们没有必要保证它的可靠性。

这种策略在TCP当中就叫做确认应答机制。需要注意的是,确认应答机制不是保证双方通信的全部消息的可靠性,而是只要一方收到了另一方的应答消息,就说明它上一次发送的数据被另一方可靠的收到了。

32位序号

如果双方在进行数据通信时,只有收到了上一次发送数据的响应才能发下一个数据,那么此时双方的通信过程就是串行的,效率可想而知。

因此双方在进行网络通信时,允许一方向另一方连续发送多个报文数据,只要保证发送的每个报文都有对应的响应消息就行了,此时也就能保证这些报文被对方收到了。

但在连续发送多个报文时,由于各个报文在进行网络传输时选择的路径可能是不一样的,因此这些报文到达对端主机的先后顺序也就可能和发送报文的顺序是不同的。但报文有序也是可靠性的一种,因此TCP报头中的32位序号的作用之一实际就是用来保证报文的有序性的。

TCP将发送出去的每个字节数据都进行了编号,这个编号叫做序列号。

【网络基础】——传输层_第12张图片

  • 比如上面发送端要发送3000字节的数据,如果发送端每次发送1000字节,那么就需要用三个TCP报文来发送这3000字节的数据。
  • 这三个TCP报文当中的32位序号填的就是发送数据中首个字节的序列号,因此分别填的是1、1001和2001。
  • 此时接收端收到了这三个TCP报文后,就可以根据TCP报头当中的32位序列号对这三个报文进行顺序重排(该动作在传输层进行),重排后将其放到TCP的接收缓冲区当中,此时接收端这里报文的顺序就和发送端发送报文的顺序是一样的了。

32位确认序号

TCP报头当中的32位确认序号是告诉对端,我当前已经收到了哪些数据,你的数据下一次应该从哪里开始发。以刚才的例子为例,当主机B收到主机A发送过来的32位序号为1的报文时,由于该报文当中包含1000字节的数据,因此主机B已经收到序列号为1-1000的字节数据,于是主机B发给主机A的响应数据的报头当中的32位确认序号的值就会填成1001。

  • 一方面是告诉主机A,序列号在1001之前的字节数据我已经收到了。
  • 另一方面是告诉主机A,下次向我发送数据时应该从序列号为1001的字节数据开始进行发送。

之后主机B对主机A发来的其他报文进行响应时,发给主机A的响应当中的32为确认序号的填法也是类似的道理。

【网络基础】——传输层_第13张图片

报文丢失的情况

还是以刚才的例子为例,主机A发送了三个报文给主机B,其中每个报文的有效载荷都是1000字节,这三个报文的32位序号分别是1、1001、2001。

如果这三个报文在网络传输过程中出现了丢包,最终只有序号为1和2001的报文被主机B收到了,那么当主机B在对报文进行顺序重排的时候,就会发现只收到了1-1000和2001-3000的字节数据。此时主机B在对主机A进行响应时,其响应报头当中的32位确认序号填的就是1001,告诉主机A下次向我发送数据时应该从序列号为1001的字节数据开始进行发送。

【网络基础】——传输层_第14张图片

发送端可以根据对端发来的确认序号,来判断是否某个报文可能在传输过程中丢失了。即使主机B收到了2001-3000的报文,但是主机A还是认为主机B只收到了1-1000的报文,主机A会重发1001以后的所有报文。

为什么要有两套序号机制

因为TCP是全双工的,双方可能同时想给对方发送消息

  • 双方发出的报文当中,不仅需要填充32位序号来表明自己当前发送数据的序号。
  • 还需要填充32位确认序号,对对方上一次发送的数据进行确认,告诉对方下一次应该从哪一字节序号开始进行发送。

因此在进行TCP通信时,双方都需要有确认应答机制,此时一套序号就无法满足需求了,因此需要TCP报头当中出现了两套序号。

确认应答机制

确认应答机制不是保证双方通信的全部消息的可靠性,而是通过收到对方的应答消息,来保证自己曾经发送给对方的某一条消息被对方可靠的收到了。

【网络基础】——传输层_第15张图片

TCP是面向字节流的,我们可以将TCP的发送缓冲区和接收缓冲区都想象成一个字符数组。

  • 此时上层应用拷贝到TCP发送缓冲区当中的每一个字节数据天然有了一个序号,这个序号就是字符数组的下标,只不过这个下标不是从0开始的,而是从1开始往后递增的。
  • 而双方在通信时,本质就是将自己发送缓冲区当中的数据拷贝到对方的接收缓冲区当中。
  • 发送方发送数据时报头当中所填的序号,实际就是发送的若干字节数据当中,首个字节数据在发送缓冲区当中对应的下标。
  • 接收方接收到数据进行响应时,响应报头当中的确认序号实际就是,接收缓冲区中接收到的最后一个有效数据的下一个位置所对应的下标。
  • 当发送方收到接收方的响应后,就可以从下标为确认序号的位置继续进行发送了。

超时重传机制

双方在进行网络通信时,发送方发出去的数据在一个特定的事件间隔内如果得不到对方的应答,此时发送方就会进行数据重发,这就是TCP的超时重传机制。

需要注意的是,TCP保证双方通信的可靠性,一部分是通过TCP的协议报头体现出来的,还有一部分是通过实现TCP的代码逻辑体现出来的。

比如超时重传机制实际就是发送方在发送数据后开启了一个定时器,若是在这个时间内没有收到刚才发送数据的确认应答报文,则会对该报文进行重传,这就是通过TCP的代码逻辑实现的,而在TCP报头当中是体现不出来的。

丢包的两种情况

丢包分为两种情况,一种是发送的数据报文丢失了,此时发送端在一定时间内收不到对应的响应报文,就会进行超时重传。

丢包的另一种情况其实不是发送端发送的数据丢包了,而是对方发来的响应报文丢包了,此时发送端也会因为收不到对应的响应报文,而进行超时重传。

【网络基础】——传输层_第16张图片

  • 当出现丢包时,发送方是无法辨别是发送的数据报文丢失了,还是对方发来的响应报文丢失了,因为这两种情况下发送方都收不到对方发来的响应报文,此时发送方就只能进行超时重传。
  • 如果是对方的响应报文丢失而导致发送方进行超时重传,此时接收方就会再次收到一个重复的报文数据,但此时也不用担心,接收方可以根据报头当中的32位序号来判断曾经是否收到过这个报文,从而达到报文去重的目的。
  • 需要注意的是,当发送缓冲区当中的数据被发送出去后,操作系统不会立即将该数据从发送缓冲区当中删除或覆盖,而会让其保留在发送缓冲区当中,以免需要进行超时重传,直到收到该数据的响应报文后,发送缓冲区中的这部分数据才可以被删除或覆盖。

超时重传的等待时间

超时重传的时间不能设置的太长也不能设置的太短。

  • 超时重传的时间设置的太长,会导致丢包后对方长时间收不到对应的数据,进而影响整体重传的效率。
  • 超时重传的时间设置的太短,会导致对方收到大量的重复报文,可能对方发送的响应报文还在网络中传输而并没有丢包,但此时发送方就开始进行数据重传了,并且发送大量重复报文会也是对网络资源的浪费。

因此超时重传的时间一定要是合理的,最理想的情况就是找到一个最小的时间,保证“确认应答一定能在这个时间内返回”。但这个时间的长短,是与网络环境有关的。网好的时候重传的时间可以设置的短一点,网卡的时候重传的时间可以设置的长一点,也就是说超时重传设置的等待时间一定是上下浮动的,因此这个时间不可能是固定的某个值。

TCP为了保证无论在任何环境下都能有比较高性能的通信,因此会动态计算这个最大超时时间。

  • Linux中(BSD Unix和Windows也是如此),超时以500ms为一个单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍。
  • 如果重发一次之后,仍然得不到应答,下一次重传的等待时间就是500ms的2倍,再一次等待时间是500ms的4倍,以指数的形式递增。
  • 当累计到一定的重传次数后,TCP就会认为是网络或对端主机出现了异常,进而强转关闭连接。

流量控制

TCP支持根据接收端的接收数据的能力来决定发送端发送数据的速度,这个机制叫做流量控制(Flow Control)。

接收端处理数据的速度是有限的,如果发送端发的太快,导致接收端的缓冲区被打满,此时发送端继续发送数据,就会造成丢包,进而引起丢包重传等一系列连锁反应。

因此接收端可以将自己接收数据的能力告知发送端,让发送端控制自己发送数据的速度。接收端自己接收数据的能力在TCP报头中的16位窗口大小体现。

16位窗口大小

这个16位窗口大小当中填的是自身接收缓冲区中剩余空间的大小,也就是当前主机接收数据的能力。接收端在对发送端发来的数据进行响应时,就可以通过16位窗口大小告知发送端自己当前接收缓冲区剩余空间的大小,此时发送端就可以根据这个窗口大小字段来调整自己发送数据的速度。

  • 窗口大小字段越大,说明接收端接收数据的能力越强,此时发送端可以提高发送数据的速度。
  • 窗口大小字段越小,说明接收端接收数据的能力越弱,此时发送端可以减小发送数据的速度。
  • 如果窗口大小的值为0,说明接收端接收缓冲区已经被打满了,此时发送端就不应该再发送数据了。

TCP窗口最大是多少 

16位数字最大表示65535,理论上TCP窗口最大就只有65535字节,但是实际上TCP报头当中40字节的选项字段中包含了一个窗口扩大因子M,实际窗口大小是窗口字段的值左移M位得到的。

第一次向对方发送数据时如何得知对方的窗口大小? 

双方在进行TCP通信之前需要先进行三次握手建立连接,而双方在握手时除了验证双方通信信道是否通畅以外,还进行了其他信息的交互,其中就包括告知对方自己的接收能力,因此在双方还没有正式开始通信之前就已经知道了对方接收数据能力,所以双方在发送数据时是不会出现缓冲区溢出的问题的。 

发送端可以利用接收端ACK应答报文中的16位窗口大小进行流量控制

  • 接收端将自己可以接收的缓冲区大小放入TCP首部中的“窗口大小”字段,通过ACK通知发送端。
  • 窗口大小字段越大,说明网络的吞吐量越高。
  • 接收端一旦发现自己的缓冲区快满了,就会将窗口大小设置成一个更小的值通知给发送端。
  • 发送端接收到这个窗口之后,就会减慢自己发送的速度。
  • 如果接收端缓冲区满了,就会将窗口值设置为0,这时发送方不再发送数据,但需要定期发送一个窗口探测数据段,使接收端把窗口大小告诉发送端。

当发送端得知接收端接收数据的能力为0时会停止发送数据,此时发送端会通过以下两种方式来得知何时可以继续发送数据。

  • 等待告知。接收端上层将接收缓冲区当中的数据读走后,接收端向发送端发送一个TCP报文,主动将自己的窗口大小告知发送端,发送端得知接收端的接收缓冲区有空间后就可以继续发送数据了。
  • 主动询问。发送端每隔一段时间向接收端发送报文,该报文不携带有效数据,只是为了询问发送端的窗口大小,直到接收端的接收缓冲区有空间后发送端就可以继续发送数据了。

连接管理机制

TCP是面向连接的 

TCP的各种可靠性机制实际都不是从主机到主机的,而是基于连接的,与连接是强相关的。比如一台服务器启动后可能有多个客户端前来访问,如果TCP不是基于连接的,也就意味着服务器端只有一个接收缓冲区,此时各个客户端发来的数据都会拷贝到这个接收缓冲区当中,此时这些数据就可能会互相干扰。

而我们在进行TCP通信之前需要先建立连接,就是因为TCP的各种可靠性保证都是基于连接的,要保证传输数据的可靠性的前提就是先建立好连接。

操作系统管理连接

面向连接是TCP可靠性的一种,只有在通信建立好连接才会有各种可靠性的保证,而一台机器上可能会存在大量的连接,此时操作系统就不得不对这些连接进行管理。

  • 操作系统在管理这些连接时需要“先描述,再组织”,在操作系统中一定有一个描述连接的结构体,该结构体当中包含了连接的各种属性字段,所有定义出来的连接结构体最终都会以某种数据结构组织起来,此时操作系统对连接的管理就变成了对该数据结构的增删查改。
  • 建立连接,实际就是在操作系统中用该结构体定义一个结构体变量,然后填充连接的各种属性字段,最后将其插入到管理连接的数据结构当中即可。
  • 断开连接,实际就是将某个连接从管理连接的数据结构当中删除,释放该连接曾经占用的各种资源。
  • 因此连接的管理也是有成本的,这个成本就是管理连接结构体的时间成本,以及存储连接结构体的空间成本。

TCP报头中的6个标志位

TCP建立连接三次握手四次挥手的过程中需要用到TCP报头中的6个标志位,所以先介绍一下这6个标志位分别有什么作用。

SYN

  • 报文当中的SYN被设置为1,表明该报文是一个连接建立的请求报文。
  • 只有在连接建立阶段,SYN才被设置,正常通信时SYN不会被设置。

ACK 

  • 报文当中的ACK被设置为1,表明该报文可以对收到的报文进行确认。
  • 一般除了第一个请求报文没有设置ACK以外,其余报文基本都会设置ACK,因为发送出去的数据本身就对对方发送过来的数据具有一定的确认能力,因此双方在进行数据通信时,可以顺便对对方上一次发送的数据进行响应。

FIN 

  • 报文当中的FIN被设置为1,表明该报文是一个连接断开的请求报文。
  • 只有在断开连接阶段,FIN才被设置,正常通信时FIN不会被设置。

 URG

双方在进行网络通信的时候,由于TCP是保证数据按序到达的,即便发送端将要发送的数据分成了若干个TCP报文进行发送,最终到达接收端时这些数据也都是有序的,因为TCP可以通过序号来对这些TCP报文进行顺序重排,最终就能保证数据到达对端接收缓冲区中时是有序的。 

TCP按序到达本身也是我们的目的,此时对端上层在从接收缓冲区读取数据时也必须是按顺序读取的。但是有时候发送端可能发送了一些“紧急数据”,这些数据需要让对方上层提取进行读取,此时应该怎么办呢?

这就需要用到URG标志位,以及TCP报头当中的16位紧急指针。 

  • 当URG标志位被设置为1时,需要通过TCP报头当中的16位紧急指针来找到紧急数据,否则一般情况下不需要关注TCP报头当中的16位紧急指针。
  • 16位紧急指针代表的就是紧急数据在报文中的偏移量。
  • URG标志位表明TCP传输了一个紧急数据,16位紧急指针帮助找到紧急数据所在的位置,但要注意TCP中的紧急数据大小只有一个字节。
  • 通过URG和16位紧急指针就可以实现TCP传输过程中紧急数据的插队操作。

 PSH

报文当中的PSH被设置为1,是在告诉对方尽快将你的接收缓冲区当中的数据交付给上层。提示接收端应用程序立刻将数据从TCP缓冲区读走。 

 RST

  • 报文当中的RST被设置为1,表示需要让对方重新建立连接。
  • 在通信双方在连接未建立好的情况下,一方向另一方发数据,此时另一方发送的响应报文当中的RST标志位就会被置1,表示要求对方重新建立连接。
  • 在双方建立好连接进行正常通信时,如果通信中途发现之前建立好的连接出现了异常也会要求重新建立连接。

三次握手

三次握手的过程

双方在进行TCP通信之前需要先建立连接,建立连接的这个过程我们称之为三次握手。

【网络基础】——传输层_第17张图片

以服务器和客户端为例,当客户端想要与服务器进行通信时,需要先与服务器建立连接,此时客户端作为主动方会先向服务器发送连接建立请求,然后双方TCP在底层会自动进行三次握手。

  • 第一次握手:客户端向服务器发送的报文当中的SYN位被设置为1,表示请求与服务器建立连接。
  • 第二次握手:服务器收到客户端发来的连接请求报文后,紧接着向客户端发起连接建立请求并对客户端发来的连接请求进行响应,此时服务器向客户端发送的报文当中的SYN位和ACK位均被设置为1。
  • 第三次握手:客户端收到服务器发来的报文后,得知服务器收到了自己发送的连接建立请求,并请求和自己建立连接,最后客户端再向服务器发来的报文进行响应。

需要注意的是,客户端向服务器发起的连接建立请求,是请求建立从客户端到服务器方向的通信连接,而TCP是全双工通信,因此服务器在收到客户端发来的连接建立请求后,服务器也需要向客户端发起连接建立请求,请求建立从服务器到客户端方法的通信连接。

为什么是3次握手? 

首先我们需要知道,连接建立不是百分之百能成功的,通信双方在进行三次握手时,其中前两次握手能够保证被对方收到,因为前两次握手都有对应的下一次握手对其进行响应,但第三次握手是没有对应的响应报文的,如果第三次握手时客户端发送的ACK报文丢失了,那么连接建立就会失败。

【网络基础】——传输层_第18张图片

虽然客户端发起第三次握手后就完成了三次握手,但服务器却没有收到客户端发来的第三次握手,此时服务器端就不会建立对应的连接。所以建立连接时不管采用几次握手,最后一次握手的可靠性都是不能保证的。

既然连接的建立都不是百分之百成功的,因此建立连接时具体采用几次握手的依据,实际是看几次握手时的优点更多。

三次握手是验证双方通信信道的最小次数:

  • 因为TCP是全双工通信的,因此连接建立的核心要务实际是,验证双方的通信信道是否是连通的。
  • 而三次握手恰好是验证双方通信信道的最小次数,通过三次握手后双方就都能知道自己和对方是否都能够正常发送和接收数据。
  • 在客户端看来,当它收到服务器发来第二次握手时,说明自己发出的第一次握手被对方可靠的收到了,证明自己能发以及服务器能收,同时当自己收到服务器发来的第二次握手时,也就证明服务器能发以及自己能收,此时就证明自己和服务器都是能发能收的。
  • 在服务器看来,当它收到客户端发来第一次握手时,证明客户端能发以及自己能收,而当它收到客户端发来的第三次握手时,说明自己发出的第二次握手被对方可靠的收到了,也就证明自己能发以及客户端能收,此时就证明自己和客户端都是能发能收的。
  • 既然三次握手已经能够验证双方通信信道是否正常了,那么三次以上的握手当然也是可以验证的,但既然三次已经能验证了就没有必要再进行更多次的握手了。

三次握手能够保证连接建立时的异常连接挂在客户端。

因此,这里给出两个建立连接时采用三次握手的理由:

  • 三次握手是验证双方通信信道的最小次数,能够让能建立的连接尽快建立起来。
  • 三次握手能够保证连接建立时的异常连接挂在客户端(风险转移)。

三次握手时的状态变化

【网络基础】——传输层_第19张图片

三次握手时的状态变化如下:

  • 最开始时客户端和服务器都处于CLOSED状态。
  • 服务器为了能够接收客户端发来的连接请求,需要由CLOSED状态变为LISTEN状态。
  • 此时客户端就可以向服务器发起三次握手了,当客户端发起第一次握手后,状态变为SYN_SENT状态。
  • 处于LISTEN状态的服务器收到客户端的连接请求后,将该连接放入内核等待队列中,并向客户端发起第二次握手,此时服务器的状态变为SYN_RCVD。
  • 当客户端收到服务器发来的第二次握手后,紧接着向服务器发送最后一次握手,此时客户端的连接已经建立,状态变为ESTABLISHED。
  • 而服务器收到客户端发来的最后一次握手后,连接也建立成功,此时服务器的状态也变成ESTABLISHED。

至此三次握手结束,通信双方可以开始进行数据交互了。

套接字和三次握手之间的关系

  • 在客户端发起连接建立请求之前,服务器需要先进入LISTEN状态,此时就需要服务器调用对应listen函数。
  • 当服务器进入LISTEN状态后,客户端就可以向服务器发起三次握手了,此时客户端对应调用的就是connect函数。
  • 需要注意的是,connect函数不参与底层的三次握手,connect函数的作用只是发起三次握手。当connect函数返回时,要么是底层已经成功完成了三次握手连接建立成功,要么是底层三次握手失败。
  • 如果服务器端与客户端成功完成了三次握手,此时在服务器端就会建立一个连接,但这个连接在内核的等待队列当中,服务器端需要通过调用accept函数将这个建立好的连接获取上来。
  • 当服务器端将建立好的连接获取上来后,双方就可以通过调用read/recv函数和write/send函数进行数据交互了。

四次挥手

四次挥手的过程

由于双方维护连接都是需要成本的,因此当双方TCP通信结束之后就需要断开连接,断开连接的这个过程我们称之为四次挥手。

【网络基础】——传输层_第20张图片

还是以服务器和客户端为例,当客户端与服务器通信结束后,需要与服务器断开连接,此时就需要进行四次挥手。

  • 第一次挥手:客户端向服务器发送的报文当中的FIN位被设置为1,表示请求与服务器断开连接。
  • 第二次挥手:服务器收到客户端发来的断开连接请求后对其进行响应。
  • 第三次挥手:服务器收到客户端断开连接的请求,且已经没有数据需要发送给客户端的时候,服务器就会向客户端发起断开连接请求。
  • 第四次挥手:客户端收到服务器发来的断开连接请求后对其进行响应。

四次挥手结束后双方的连接才算真正断开。

为什么要四次挥手?

  • 由于TCP是全双工的,建立连接的时候需要建立双方的连接,断开连接时也同样如此。在断开连接时不仅要断开从客户端到服务器方向的通信信道,也要断开从服务器到客户端的通信信道,其中每两次挥手对应就是关闭一个方向的通信信道,因此断开连接时需要进行四次挥手。
  • 需要注意的是,四次挥手当中的第二次和第三次挥手不能合并在一起,因为第三次握手是服务器端想要与客户端断开连接时发给客户端的请求,而当服务器收到客户端断开连接的请求并响应后,服务器不一定会马上发起第三次挥手,因为服务器可能还有某些数据要发送给客户端,只有当服务器端将这些数据发送完后才会向客户端发起第三次挥手。

四次挥手时的状态变化

【网络基础】——传输层_第21张图片

四次挥手时的状态变化如下:

  • 在挥手前客户端和服务器都处于连接建立后的ESTABLISHED状态。
  • 客户端为了与服务器断开连接主动向服务器发起连接断开请求,此时客户端的状态变为FIN_WAIT_1。
  • 服务器收到客户端发来的连接断开请求后对其进行响应,此时服务器的状态变为CLOSE_WAIT。
  • 当服务器没有数据需要发送给客户端的时,服务器会向客户端发起断开连接请求,等待最后一个ACK到来,此时服务器的状态变为LASE_ACK。
  • 客户端收到服务器发来的第三次挥手后,会向服务器发送最后一个响应报文,此时客户端进入TIME_WAIT状态。
  • 当服务器收到客户端发来的最后一个响应报文时,服务器会彻底关闭连接,变为CLOSED状态。
  • 而客户端则会等待一个2MSL(Maximum Segment Lifetime,报文最大生存时间)才会进入CLOSED状态。

至此四次挥手结束,通信双方成功断开连接。

套接字和四次挥手之间的关系

  • 客户端发起断开连接请求,对应就是客户端主动调用close函数。
  • 服务器发起断开连接请求,对应就是服务器主动调用close函数。
  • 一个close对应的就是两次挥手,双方都要调用close,因此就是四次挥手。

CLOSE_WAIT 

  • 双方在进行四次挥手时,如果只有客户端调用了close函数,而服务器不调用close函数,此时服务器就会进入CLOSE_WAIT状态,而客户端则会进入到FIN_WAIT_2状态。
  • 但只有完成四次挥手后连接才算真正断开,此时双方才会释放对应的连接资源。如果服务器没有主动关闭不需要的文件描述符,此时在服务器端就会存在大量处于CLOSE_WAIT状态的连接,而每个连接都会占用服务器的资源,最终就会导致服务器可用资源越来越少。
  • 因此如果不及时关闭不用的文件描述符,除了会造成文件描述符泄漏以外,可能也会导致连接资源没有完全释放,这其实也是一种内存泄漏的问题。
  • 因此在编写网络套接字代码时,如果发现服务器端存在大量处于CLOSE_WAIT状态的连接,此时就可以检查一下是不是服务器没有及时调用close函数关闭对应的文件描述符。

TIME_WAIT 

四次挥手中前三次挥手丢包时的解决方法:

  • 第一次挥手丢包:客户端收不到服务器的应答,进而进行超时重传。
  • 第二次挥手丢包:客户端收不到服务器的应答,进而进行超时重传。
  • 第三次挥手丢包:服务器收不到客户端的应答,进而进行超时重传。
  • 第四次挥手丢包:服务器收不到客户端的应答,进而进行超时重传。

如果客户端在发出第四次挥手后立即进入CLOSED状态,此时服务器虽然进行了超时重传,但已经得不到客户端的响应了,因为客户端已经将连接关闭了。

服务器在经过若干次超时重发后得不到响应,最终也一定会将对应的连接关闭,但在服务器不断进行超时重传期间还需要维护这条废弃的连接,这样对服务器是非常不友好的。

为了避免这种情况,因此客户端在四次挥手后没有立即进入CLOSED状态,而是进入到了TIME_WAIT状态进行等待,此时要是第四次挥手的报文丢包了,客户端也能收到服务器重发的报文然后进行响应。

TIME_WAIT状态存在的必要性:

  • 客户端在进行四次挥手后进入TIME_WAIT状态,如果第四次挥手的报文丢包了,客户端在一段时间内仍然能够接收服务器重发的FIN报文并对其进行响应,能够较大概率保证最后一个ACK被服务器收到。
  • 客户端发出最后一次挥手时,双方历史通信的数据可能还没有发送到对方。因此客户端四次挥手后进入TIME_WAIT状态,还可以保证双方通信信道上的数据在网络中尽可能的消散。

实际第四次挥手丢包后,可能双方网络状态出现了问题,尽管客户端还没有关闭连接,也收不到服务器重发的连接断开请求,此时客户端TIME_WAIT等若干时间最终会关闭连接,而服务器经过多次超时重传后也会关闭连接。这种情况虽然也让服务器维持了闲置的连接,但毕竟是少数,引入TIME_WAIT状态就是争取让主动发起四次挥手的客户端维护这个成本。

因此TCP并不能完全保证建立连接和断开连接的可靠性,TCP保证的是建立连接之后,以及断开连接之前双方通信数据的可靠性。

TIME_WAIT的等待时长是多少?

TIME_WAIT的等待时长既不能太长也不能太短。

  • 太长会让等待方维持一个较长的时间的TIME_WAIT状态,在这个时间内等待方也需要花费成本来维护这个连接,这也是一种浪费资源的现象。
  • 太短可能没有达到我们最初目的,没有保证ACK被对方较大概率收到,也没有保证数据在网络中消散,此时TIME_WAIT的意义也就没有了。

TCP协议规定,主动关闭连接的一方在四次挥手后要处于TIME_WAIT状态,等待两个MSL(Maximum Segment Lifetime,报文最大生存时间)的时间才能进入CLOSED状态。

滑动窗口

连续发送多个数据

双方在进行TCP通信时可以一次向对方发送多条数据,这样可以将等待多个响应的时间重叠起来,进而提高数据通信的效率。

需要注意的是,虽然双方在进行TCP通信时可以一次向对方发送大量的报文,但不能将自己发送缓冲区当中的数据全部打包发送给对端,在发送数据时还要考虑对方的接收能力。

滑动窗口

发送方可以一次发送多个报文给对方,此时也就意味着发送出去的这部分报文当中有相当一部分数据是暂时没有收到应答的。

其实可以将发送缓冲区当中的数据分为三部分:

  • 已经发送并且已经收到ACK的数据。
  • 已经发送还但没有收到ACK的数据。
  • 还没有发送的数据。

这里发送缓冲区的第二部分就叫做滑动窗口。(也有人把这三部分整体称之为滑动窗口,而将其中的第二部分称之为窗口大小)

【网络基础】——传输层_第22张图片

而滑动窗口描述的就是,发送方不用等待ACK一次所能发送的数据最大量。

【网络基础】——传输层_第23张图片

滑动窗口存在的最大意义就是可以提高发送数据的效率:

  • 滑动窗口的大小等于对方窗口大小与自身拥塞窗口大小的较小值,因为发送数据时不仅要考虑对方的接收能力,还要考虑当前网络的状况。
  • 我们这里先不考虑拥塞窗口,并且假设对方的窗口大小一直固定为4000,此时发送方不用等待ACK一次所能发送的数据就是4000字节,因此滑动窗口的大小就是4000字节。(四个段)
  • 现在连续发送1001-2000、2001-3000、3001-4000、4001-5000这四个段的时候,不需要等待任何ACK,可以直接进行发送。
  • 当收到对方响应的确认序号为2001时,说明1001-2000这个数据段已经被对方收到了,此时该数据段应该被纳入发送缓冲区当中的第一部分,而由于我们假设对方的窗口大小一直是4000,因此滑动窗口现在可以向右移动,继续发送5001-6000的数据段,以此类推。
  • 滑动窗口越大,则网络的吞吐率越高,同时也说明对方的接收能力很强。

当发送方发送出去的数据段陆陆续续收到对应的ACK时,就可以将收到ACK的数据段归置到滑动窗口的左侧,并根据当前滑动窗口的大小来决定,是否需要将滑动窗口右侧的数据归置到滑动窗口当中。

拥塞控制

两个主机在进行TCP通信的过程中,出现个别数据包丢包的情况是很正常的,此时可以通过快重传或超时重发对数据包进行补发。但如果双方在通信时出现了大量丢包,此时就不能认为是正常现象了。

TCP不仅考虑了通信双端主机的问题,同时也考虑了网络的问题。

  • 流量控制:考虑的是对端接收缓冲区的接收能力,进而控制发送方发送数据的速度,避免对端接收缓冲区溢出。
  • 滑动窗口:考虑的是发送端不用等待ACK一次所能发送的数据最大量,进而提高发送端发送数据的效率。
  • 拥塞窗口:考虑的是双方通信时网络的问题,如果发送的数据超过了拥塞窗口的大小就可能会引起网络拥塞。

双方网络通信时出现少量的丢包TCP是允许的,但一旦出现大量的丢包,此时量变引起质变,这件事情的性质就变了,此时TCP就不再推测是双方接收和发送数据的问题,而判断是双方通信信道网络出现了拥塞问题。

如何解决网络拥塞问题

  • 如果网络中的主机在同一时间节点都大量向网络当中塞数据,此时位于网络中某些关键节点的路由器下就可能排了很长的报文,最终导致报文无法在超时时间内到达对端主机,此时也就导致了丢包问题。
  • 当网络出现拥塞问题时,通信双方虽然不能提出特别有效的解决方案,但双方主机可以做到不加重网络的负担。
  • 双方通信时如果出现大量丢包,不应该立即将这些报文进行重传,而应该少发数据甚至不发数据,等待网络状况恢复后双方再慢慢恢复数据的传输速率。

需要注意的是,网络拥塞时影响的不只是一台主机,而几乎是该网络当中的所有主机,此时所有使用TCP传输控制协议的主机都会执行拥塞避免算法。

因此拥塞控制看似只是谈论的一台主机上的通信策略,实际这个策略是所有主机在网络崩溃后都会遵守的策略。一旦出现网络拥塞,该网络当中的所有主机都会受到影响,此时所有主机都要执行拥塞避免,这样才能有效缓解网络拥塞问题。通过这样的方式就能保证雪崩不会发生,或雪崩发生后可以尽快恢复。

拥塞控制

虽然滑动窗口能够高效可靠的发送大量的数据,但如果在刚开始阶段就发送大量的数据,就可能会引发某些问题。因为网络上有很多的计算机,有可能当前的网络状态就已经比较拥塞了,因此在不清楚当前网络状态的情况下,贸然发送大量的数据,就可能会引起网络拥塞问题。

因此TCP引入了慢启动机制,在刚开始通信时先发少量的数据探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输数据。

【网络基础】——传输层_第24张图片

  • TCP除了有窗口大小和滑动窗口的概念以外,还有一个窗口叫做拥塞窗口。拥塞窗口是可能引起网络拥塞的阈值,如果一次发送的数据超过了拥塞窗口的大小就可能会引起网络拥塞。
  • 刚开始发送数据的时候拥塞窗口大小定义以为1,每收到一个ACK应答拥塞窗口的值就加一。
  • 每次发送数据包的时候,将拥塞窗口和接收端主机反馈的窗口大小做比较,取较小的值作为实际发送数据的窗口大小,即滑动窗口的大小。

每收到一个ACK应答拥塞窗口的值就加一,此时拥塞窗口就是以指数级别进行增长的,如果先不考虑对方接收数据的能力,那么滑动窗口的大家就只取决于拥塞窗口的大小。

但指数级增长是非常快的,因此“慢启动”实际只是初始时比较慢,但越往后增长的越快。如果拥塞窗口的值一直以指数的方式进行增长,此时就可能在短时间内再次导致网络出现拥塞。

  • 为了避免短时间内再次导致网络拥塞,因此不能一直让拥塞窗口按指数级的方式进行增长。
  • 此时就引入了慢启动的阈值,当拥塞窗口的大小超过这个阈值时,就不再按指数的方式增长,而按线性的方式增长。
  • 当TCP刚开始启动的时候,慢启动阈值设置为对方窗口大小的最大值。
  • 在每次超时重发的时候,慢启动阈值会变成当前拥塞窗口的一半,同时拥塞窗口的值被重新置为1,如此循环下去。

【网络基础】——传输层_第25张图片

延迟应答

如果接收数据的主机收到数据后立即进行ACK应答,此时返回的窗口可能比较小。

  • 假设对方接收端缓冲区剩余空间大小为1M,对方一次收到500K的数据后,如果立即进行ACK应答,此时返回的窗口就是500K。
  • 但实际接收端处理数据的速度很快,10ms之内就将接收缓冲区中500K的数据消费掉了。
  • 在这种情况下,接收端处理还远没有达到自己的极限,即使窗口再放大一些,也能处理过来。
  • 如果接收端稍微等一会再进行ACK应答,比如等待200ms再应答,那么这时返回的窗口大小就是1M。

需要注意的是,延迟应答的目的不是为了保证可靠性,而是留出一点时间让接收缓冲区中的数据尽可能被上层应用层消费掉,此时在进行ACK响应的时候报告的窗口大小就可以更大,从而增大网络吞吐量,进而提高数据的传输效率。

捎带应答

捎带应答其实是TCP通信时最常规的一种方式,就好比主机A给主机B发送了一条消息,当主机B收到这条消息后需要对其进行ACK应答,但如果主机B此时正好也要给主机A发生消息,此时这个ACK就可以搭顺风车,而不用单独发送一个ACK应答,此时主机B发送的这个报文既发送了数据,又完成了对收到数据的响应,这就叫做捎带应答。

【网络基础】——传输层_第26张图片

捎带应答最直观的角度实际也是发送数据的效率,此时双方通信时就可以不用再发送单纯的确认报文了。

此外,由于捎带应答的报文携带了有效数据,因此对方收到该报文后会对其进行响应,当收到这个响应报文时不仅能够确保发送的数据被对方可靠的收到了,同时也能确保捎带的ACK应答也被对方可靠的收到了。

基于TCP的应用层协议

常见的基于TCP的应用层协议如下:

  • HTTP(超文本传输协议)。
  • HTTPS(安全数据传输协议)。
  • SSH(安全外壳协议)。
  • Telnet(远程终端协议)。
  • FTP(文件传输协议)。
  • SMTP(电子邮件传输协议)。

你可能感兴趣的:(Linux,网络,linux,TCP)