背景
发现fastAPI和pytorch一起使用时,如果不使用async
定义接口则会产生内存泄露,走读一下fastAPI代码看下区别到底在哪,相关git issue为https://github.com/tiangolo/fastapi/issues/596
fastAPI uvicorn代码走读
调用rest接口时,会走到starlette.routing.py
中class Router
的call()
方法,进行url匹配,如果走的是默认url群匹配,看这几行代码就足够了,下面不重要。
starlette.routing.py class Router
async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None:
"""
The main entry point to the Router class.
"""
assert scope["type"] in ("http", "websocket", "lifespan")
if "router" not in scope:
scope["router"] = self
# life span是控制服务器的起停的,这里不用关注
if scope["type"] == "lifespan":
await self.lifespan(scope, receive, send)
return
partial = None
for route in self.routes:
# Determine if any route matches the incoming scope,
# and hand over to the matching route if found.
match, child_scope = route.matches(scope)
if match == Match.FULL:
scope.update(child_scope)
# 全匹配走到这里去调用实现并封装http请求
await route.handle(scope, receive, send)
return
elif match == Match.PARTIAL and partial is None:
partial = route
partial_scope = child_scope
此处的routing实例应该是类fastapi.routing.py
中的class APIRoute
的实例,但是那块没覆写__call__()
方法,所以此处的self.routes
属性就是ASGI初始化的时候通过装饰器放入的starlette.Route
对象的实例。对应的handle实现如下
starlette.routing.py class Route
async def handle(self, scope: Scope, receive: Receive, send: Send) -> None:
if self.methods and scope["method"] not in self.methods:
if "app" in scope:
raise HTTPException(status_code=405)
else:
response = PlainTextResponse("Method Not Allowed", status_code=405)
await response(scope, receive, send)
else:
await self.app(scope, receive, send)
其中,FastAPI中的route对象的实现为fastapi.routing.py
中class APIRoute(routing.Route)
为starlette Route对象的子类,app属性的初始化方法如下。
fastapi.routing.py class APIRoute
class APIRoute(routing.Route):
def __init__:
#其他属性初始化省略了
self.dependant = get_dependant(path=self.path_format, call=self.endpoint)
self.app = request_response(self.get_route_handler())
def get_route_handler(self) -> Callable:
return get_request_handler(
dependant=self.dependant,
body_field=self.body_field,
status_code=self.status_code,
response_class=self.response_class or JSONResponse,
response_field=self.secure_cloned_response_field,
response_model_include=self.response_model_include,
response_model_exclude=self.response_model_exclude,
response_model_by_alias=self.response_model_by_alias,
response_model_exclude_unset=self.response_model_exclude_unset,
response_model_exclude_defaults=self.response_model_exclude_defaults,
response_model_exclude_none=self.response_model_exclude_none,
dependency_overrides_provider=self.dependency_overrides_provider,
)
下面都是对http请求处理的实现:
fastapi.routing.py
def get_request_handler(
dependant: Dependant,
body_field: ModelField = None,
status_code: int = 200,
response_class: Type[Response] = JSONResponse,
response_field: ModelField = None,
response_model_include: Union[SetIntStr, DictIntStrAny] = None,
response_model_exclude: Union[SetIntStr, DictIntStrAny] = set(),
response_model_by_alias: bool = True,
response_model_exclude_unset: bool = False,
response_model_exclude_defaults: bool = False,
response_model_exclude_none: bool = False,
dependency_overrides_provider: Any = None,
) -> Callable:
assert dependant.call is not None, "dependant.call must be a function"
is_coroutine = asyncio.iscoroutinefunction(dependant.call)
is_body_form = body_field and isinstance(get_field_info(body_field), params.Form)
async def app(request: Request) -> Response:
try:
body = None
if body_field:
if is_body_form:
body = await request.form()
else:
body_bytes = await request.body()
if body_bytes:
body = await request.json()
except Exception as e:
logger.error(f"Error getting request body: {e}")
raise HTTPException(
status_code=400, detail="There was an error parsing the body"
) from e
solved_result = await solve_dependencies(
request=request,
dependant=dependant,
body=body,
dependency_overrides_provider=dependency_overrides_provider,
)
values, errors, background_tasks, sub_response, _ = solved_result
if errors:
raise RequestValidationError(errors, body=body)
else:
# 在这里调用你的rest接口实现
raw_response = await run_endpoint_function(
dependant=dependant, values=values, is_coroutine=is_coroutine
)
if isinstance(raw_response, Response):
if raw_response.background is None:
raw_response.background = background_tasks
return raw_response
response_data = await serialize_response(
field=response_field,
response_content=raw_response,
include=response_model_include,
exclude=response_model_exclude,
by_alias=response_model_by_alias,
exclude_unset=response_model_exclude_unset,
exclude_defaults=response_model_exclude_defaults,
exclude_none=response_model_exclude_none,
is_coroutine=is_coroutine,
)
response = response_class(
content=response_data,
status_code=status_code,
background=background_tasks,
)
response.headers.raw.extend(sub_response.headers.raw)
if sub_response.status_code:
response.status_code = sub_response.status_code
return response
return app
starlette.routing.py
def request_response(func: typing.Callable) -> ASGIApp:
"""
Takes a function or coroutine `func(request) -> response`,
and returns an ASGI application.
"""
is_coroutine = asyncio.iscoroutinefunction(func)
async def app(scope: Scope, receive: Receive, send: Send) -> None:
request = Request(scope, receive=receive, send=send)
# 在fastAPI中 func就是get_request_handler返回的协程对象,is_corutine总是true。
if is_coroutine:
response = await func(request)
else:
response = await run_in_threadpool(func, request)
await response(scope, receive, send)
return app
上面我们已经看到了,fastAPI在是通过dependant对象来驱动接口实现的,下面进去看下dependant对象的初始化。
fastapi.dependencies.utils.py
def get_dependant(
*,
path: str,
call: Callable,
name: str = None,
security_scopes: List[str] = None,
use_cache: bool = True,
) -> Dependant:
path_param_names = get_path_param_names(path)
endpoint_signature = get_typed_signature(call)
signature_params = endpoint_signature.parameters
if inspect.isgeneratorfunction(call) or inspect.isasyncgenfunction(call):
check_dependency_contextmanagers()
dependant = Dependant(call=call, name=name, path=path, use_cache=use_cache)
for param_name, param in signature_params.items():
if isinstance(param.default, params.Depends):
sub_dependant = get_param_sub_dependant(
param=param, path=path, security_scopes=security_scopes
)
dependant.dependencies.append(sub_dependant)
for param_name, param in signature_params.items():
if isinstance(param.default, params.Depends):
continue
if add_non_field_param_to_dependency(param=param, dependant=dependant):
continue
param_field = get_param_field(
param=param, default_field_info=params.Query, param_name=param_name
)
if param_name in path_param_names:
assert is_scalar_field(
field=param_field
), f"Path params must be of one of the supported types"
if isinstance(param.default, params.Path):
ignore_default = False
else:
ignore_default = True
param_field = get_param_field(
param=param,
param_name=param_name,
default_field_info=params.Path,
force_type=params.ParamTypes.path,
ignore_default=ignore_default,
)
add_param_to_fields(field=param_field, dependant=dependant)
elif is_scalar_field(field=param_field):
add_param_to_fields(field=param_field, dependant=dependant)
elif isinstance(
param.default, (params.Query, params.Header)
) and is_scalar_sequence_field(param_field):
add_param_to_fields(field=param_field, dependant=dependant)
else:
field_info = get_field_info(param_field)
assert isinstance(
field_info, params.Body
), f"Param: {param_field.name} can only be a request body, using Body(...)"
dependant.body_params.append(param_field)
这里看到也就是对一下路径参数啥的初始化也校验啥的,没啥了,直接往下看调用逻辑吧
async def run_endpoint_function(
*, dependant: Dependant, values: Dict[str, Any], is_coroutine: bool
) -> Any:
# Only called by get_request_handler. Has been split into its own function to
# facilitate profiling endpoints, since inner functions are harder to profile.
assert dependant.call is not None, "dependant.call must be a function"
if is_coroutine:
return await dependant.call(**values)
else:
return await run_in_threadpool(dependant.call, **values)
OK,这里就可以知道fastAPI定义rest接口加不加async有什么区别了,一个是直接协程调用,不加async走了run_in_threadpool
async def run_in_threadpool(
func: typing.Callable[..., T], *args: typing.Any, **kwargs: typing.Any
) -> T:
loop = asyncio.get_event_loop()
if contextvars is not None: # pragma: no cover
# Ensure we run in the same context
child = functools.partial(func, *args, **kwargs)
context = contextvars.copy_context()
func = context.run
args = (child,)
elif kwargs: # pragma: no cover
# loop.run_in_executor doesn't accept 'kwargs', so bind them in here
func = functools.partial(func, **kwargs)
return await loop.run_in_executor(None, func, *args)
这里已经看到实际执行时仍然使用的uvloop的事件循环loop.run_in_executor(None, func, *args)
,下面就可以通过这一步入手来看是不是pytorch于uvloop跑在一起就存在内存泄露了。
当前结论:如果使用事件循环的run_in_executor并不指定executor时,默认executor的worker数量为cpu数量x5,线程在执行完后不会释放资源,但是当线程池已经满了以后理论上内存不应继续上涨
接下来贴下我的测试代码:
import asyncio
import cv2 as cv
import gc
from pympler import tracker
from concurrent import futures
executor = futures.ThreadPoolExecutor(max_workers=1)
memory_tracker = tracker.SummaryTracker()
def mm():
img = cv.imread("cap.jpg", 0)
detector = cv.AKAZE_create()
kpts, desc = detector.detectAndCompute(img, None)
gc.collect()
memory_tracker.print_diff()
return None
async def main():
while True:
loop = asyncio.get_event_loop()
await loop.run_in_executor(executor, mm)
if __name__=='__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
我的测试机上有40个cpu,所以理论上线程池的worker上线为200,如果指定executor最大数量的话测试(如以上代码),会发现内存稳定没有泄露,但是如果跟fastAPI一样的话会发现内存在前200次循环会一直上涨,之后稳定,但是如果你再thread_pool里执行的是特别大的模型的话,这里200这个数量级就太大了,有可能会吃掉非常多的内存。
结论:如果用fastAPI跑非常大的深度学习模型,且部署的机器CPU数量较多的话,的确会吃掉很多内存,但是这里不是内存泄露,还是有上限的,但是还是建议starlette可以修改可以配置线程池大小,否则吃掉的内存太多了。当前建议容器化封装的时候只给对应服务分配少量的cpu资源,可以解决这个问题。
另外,python 3.8已经限制了线程池的最大数量如下,如果你用的python 3.8也不用操心这个问题了。
if max_workers is None:
# ThreadPoolExecutor is often used to:
# * CPU bound task which releases GIL
# * I/O bound task (which releases GIL, of course)
#
# We use cpu_count + 4 for both types of tasks.
# But we limit it to 32 to avoid consuming surprisingly large resource
# on many core machine.
max_workers = min(32, (os.cpu_count() or 1) + 4)
if max_workers <= 0:
raise ValueError("max_workers must be greater than 0")