63.合理使用预训练网络-2

63.1 目标检测中如何从零开始训练

​ 结合FAIR相关的研究,可以了解目标检测和其他任务从零训练模型一样,只要拥有足够的数据以及充分而有效的训练,同样能训练出不亚于利用预训练模型的检测器。这里提供如下几点建议:
​ 1、数据集不大时,同样需要进行数据集增强。
​ 2、预训练模型拥有更好的初始化,train from scratch需要更多的迭代次数以及时间训练和优化检测器。而二阶段模型由于并不是严格的端对端训练,此时可能需要更多的迭代次数以及时间,而一阶段检测模型训练会相对更容易些(例如DSOD以ScratchDet及)。
​ 3、目标检测中train from scratch最大的问题还是batch size过小。所以可采取的策略是增加GPU使用异步batchnorm增大batch size,若条件限制无法使用更多GPU时,可使用groupnorm代替batchnorm
​ 4、由于分类模型存在对多目标的捕捉能力弱以及对物体空间位置信息不敏感等问题,可借鉴DetNet训练一个专属于目标检测的模型网络,增强对多目标、尺度和位置拥有更强的适应性。

63.2 不同的数据集特性下如何微调

  • 数据集数据量少,数据和原数据集类似。这是通常做法只需修改最后的输出层,训练即可,训练过多参数容易过拟合。
  • 数据集数据量少,数据和原数据集差异较大。由于数据差异较大,可以在完成输出顶层的微调后,微调顶层往下一半的层数,进行微调。
  • 数据集数据量大,数据与原数据集差异较大。这种情况下,通常已经不需要用预训练模型进行微调,通常直接重新训练即可。
  • 数据集数据量大,数据与原数据类似。这时预训练模型的参数是个很好的

你可能感兴趣的:(深度学习,深度学习,计算机视觉,目标检测)