简单理解算法时间复杂度

时间复杂度基础概念

在计算机科学中,算法的时间复杂度(Time complexity)是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

算法运算次数

我们假设计算机运行一行基础代码需要执行一次运算。

int aFunc(void) {
    printf("Hello, World!\n");      //  需要执行 1 次
    return 0;       // 需要执行 1 次
}

那么上面这个方法需要执行 2 次运算

int aFunc(int n) {
    for(int i = 0; i

这个方法需要 (n + 1 + n + 1) = 2n + 2 次运算。

我们把 算法需要执行的运算次数 用 输入大小n 的函数 表示,即 T(n) 。

由算法运算次数推出时间复杂度

  1. 我们知道常数项对函数的增长速度影响并不大,所以当 T(n) = c,c 为一个常数的时候,我们说这个算法的时间复杂度为 O(1);如果 T(n) 不等于一个常数项时,直接将常数项省略。
比如
第一个 Hello, World 的例子中 T(n) = 2,所以我们说那个函数(算法)的时间复杂度为 O(1)。
T(n) = n + 29,此时时间复杂度为 O(n)。
  1. 我们知道高次项对于函数的增长速度的影响是最大的。n^3 的增长速度是远超 n^2 的,同时 n^2 的增长速度是远超 n 的。 同时因为要求的精度不高,所以我们直接忽略低此项。
比如
T(n) = n^3 + n^2 + 29,此时时间复杂度为 O(n^3)。
  1. 因为函数的阶数对函数的增长速度的影响是最显著的,所以我们忽略与最高阶相乘的常数。
比如
T(n) = 3n^3,此时时间复杂度为 O(n^3)。

综合起来:如果一个算法的执行次数是 T(n),那么只保留最高次项,同时忽略最高项的系数后得到函数 f(n),此时算法的时间复杂度就是 O(f(n))。

四个便利的法则/案例

  1. 对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个循环的时间复杂度为 O(n×m)。
void aFunc(int n) {
    for(int i = 0; i < n; i++) {         // 循环次数为 n
        printf("Hello, World!\n");      // 循环体时间复杂度为 O(1)
    }
}

此时时间复杂度为 O(n × 1),即 O(n)。

  1. 对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c...,则这个循环的时间复杂度为 O(n×a×b×c...)。分析的时候应该由里向外分析这些循环。
void aFunc(int n) {
    for(int i = 0; i < n; i++) {         // 循环次数为 n
        for(int j = 0; j < n; j++) {       // 循环次数为 n
            printf("Hello, World!\n");      // 循环体时间复杂度为 O(1)
        }
    }
}

此时时间复杂度为 O(n × n × 1),即 O(n^2)。

  1. 对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度。
void aFunc(int n) {
    // 第一部分时间复杂度为 O(n^2)
    for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
            printf("Hello, World!\n");
        }
    }
    // 第二部分时间复杂度为 O(n)
    for(int j = 0; j < n; j++) {
        printf("Hello, World!\n");
    }
}

此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。

  1. 对于条件判断语句,总的时间复杂度等于其中 时间复杂度最大的路径 的时间复杂度。
void aFunc(int n) {
    if (n >= 0) {
        // 第一条路径时间复杂度为 O(n^2)
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < n; j++) {
                printf("输入数据大于等于零\n");
            }
        }
    } else {
        // 第二条路径时间复杂度为 O(n)
        for(int j = 0; j < n; j++) {
            printf("输入数据小于零\n");
        }
    }
}

此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。

Last but not least

时间复杂度分析的基本策略是:从内向外分析,从最深层开始分析。如果遇到函数调用,要深入函数进行分析。

[参考文章](https://www.jianshu.com/p/f4cca5ce055a

你可能感兴趣的:(简单理解算法时间复杂度)