百度飞桨架构师手把手带你零基础实践深度学习——目标检测

百度飞桨架构师手把手带你零基础实践深度学习——打卡计划

  • 总目录
  • 目标检测
  • 目标检测发展历程
    • 目标检测基础概念
      • 边界框(bounding box)
      • 锚框(Anchor box)
      • 交并比
  • 林业病虫害数据集和数据预处理方法介绍
    • 读取AI识虫数据集标注信息
    • 数据读取和预处理
      • 数据读取
  • 单阶段目标检测模型YOLO-V3
    • YOLO-V3 模型设计思想
    • 产生候选区域
      • 生成锚框
      • 生成预测框
        • 标注锚框是否包含物体
        • 标注预测框的位置坐标标签
        • 标注锚框包含物体类别的标签
    • 卷积神经网络提取特征
    • 根据输出特征图计算预测框位置和类别
      • 建立输出特征图与预测框之间的关联

下面给出课程链接,欢迎各位小伙来来报考!本帖将持续更新。我只是飞桨的搬运工

在这里插入图片描述

话不多说,这么良心的课程赶快扫码上车!https://aistudio.baidu.com/aistudio/education/group/info/1297?activityId=5&directly=1&shared=1

总目录

目标检测

对计算机而言,能够“看到”的是图像被编码之后的数字,但它很难理解高层语义概念,比如图像或者视频帧中出现的目标是人还是物体,更无法定位目标出现在图像中哪个区域。目标检测的主要目的是让计算机可以自动识别图片或者视频帧中所有目标的类别,并在该目标周围绘制边界框,标示出每个目标的位置,如 图1 所示。


图1:图像分类和目标检测示意图

  • 图1(a)是图像分类任务,只需识别出这是一张斑马的图片。
  • 图1(b)是目标检测任务,不仅要识别出这是一张斑马的图片,还要标出图中斑马的位置。

目标检测发展历程

在上一节中我们学习了图像分类处理基本流程,先使用卷积神经网络提取图像特征,然后再用这些特征预测分类概率,根据训练样本标签建立起分类损失函数,开启端到端的训练,如 图2 所示。


图2:图像分类流程示意图

但对于目标检测问题,按照 图2 的流程则行不通。因为在图像分类任务中,对整张图提取特征的过程中没能体现出不同目标之间的区别,最终也就没法分别标示出每个物体所在的位置。

为了解决这个问题,结合图片分类任务取得的成功经验,我们可以将目标检测任务进行拆分。假设我们现在有某种方式可以在输入图片上生成一系列可能包含物体的区域,这些区域称为候选区域,在一张图上可以生成很多个候选区域。然后对每个候选区域,可以把它单独当成一幅图像来看待,使用图像分类模型对它进行分类,看它属于哪个类别或者背景(即不包含任何物体的类别)。

上一节我们学过如何解决图像分类任务,使用卷积神经网络对一幅图像进行分类不再是一件困难的事情。那么,现在问题的关键就是如何产生候选区域?比如我们可以使用穷举法来产生候选区域,如图3所示。


图3:候选区域

A为图像上的某个像素点,B为A右下方另外一个像素点,A、B两点可以确定一个矩形框,记作AB。

  • 如图3(a)所示:A在图片左上角位置,B遍历除A之外的所有位置,生成矩形框A1B1, …, A1Bn, …
  • 如图3(b)所示:A在图片中间某个位置,B遍历A右下方所有位置,生成矩形框AkB1, …, AkBn, …

当A遍历图像上所有像素点,B则遍历它右下方所有的像素点,最终生成的矩形框集合{AiBj}将会包含图像上所有可以选择的区域。

只要我们对每个候选区域的分类足够的准确,则一定能找到跟实际物体足够接近的区域来。穷举法也许能得到正确的预测结果,但其计算量也是非常巨大的,其所生成的总候选区域数目约为 W 2 H 2 4 \frac{W^2 H^2}{4} 4W2H2,假设 H = W = 100 H=W=100 H=W=100,总数将会达到 2.5 × 1 0 7 2.5 \times 10^{7} 2.5×107个,如此多的候选区域使得这种方法几乎没有什么实用性。但是通过这种方式,我们可以看出,假设分类任务完成的足够完美,从理论上来讲检测任务也是可以解决的,亟待解决的问题是如何设计出合适的方法来产生候选区域。

科学家们开始思考,是否可以应用传统图像算法先产生候选区域,然后再用卷积神经网络对这些区域进行分类?

  • 2013年,Ross Girshick 等人于首次将CNN的方法应用在目标检测任务上,他们使用传统图像算法Selective Search产生候选区域,取得了极大的成功,这就是对目标检测领域影响深远的区域卷积神经网络(R-CNN)模型。
  • 2015年,Ross Girshick 对此方法进行了改进,提出了Fast R-CNN模型。通过将不同区域的物体共用卷积层的计算,大大缩减了计算量,提高了处理速度,而且还引入了调整目标物体位置的回归方法,进一步提高了位置预测的准确性。
  • 2015年,Shaoqing Ren 等人提出了Faster R-CNN模型,提出了RPN的方法来产生物体的候选区域,这一方法不再需要使用传统的图像处理算法来产生候选区域,进一步提升了处理速度。
  • 2017年,Kaiming He 等人提出了Mask R-CNN模型,只需要在Faster R-CNN模型上添加比较少的计算量,就可以同时实现目标检测和物体实例分割两个任务。

以上都是基于R-CNN系列的著名模型,对目标检测方向的发展有着较大的影响力。此外,还有一些其他模型,比如SSD、YOLO(1, 2, 3)、R-FCN等也都是目标检测领域流行的模型结构。

R-CNN的系列算法分成两个阶段,先在图像上产生候选区域,再对候选区域进行分类并预测目标物体位置,它们通常被叫做两阶段检测算法。SSD和YOLO算法则只使用一个网络同时产生候选区域并预测出物体的类别和位置,所以它们通常被叫做单阶段检测算法。由于篇幅所限,本章将重点介绍YOLO-V3算法,并用其完成林业病虫害检测任务,主要涵盖如下内容:

  • 图像检测基础概念:介绍与目标检测相关的基本概念,包括边界框、锚框和交并比等。
  • 林业病虫害数据集:介绍数据集结构及数据预处理方法。
  • YOLO-V3目标检测模型:介绍算法原理,及如何应用林业病虫害数据集进行模型训练和测试。

目标检测基础概念

在介绍目标检测算法之前,先介绍一些跟检测相关的基本概念,包括边界框、锚框和交并比等。

边界框(bounding box)

检测任务需要同时预测物体的类别和位置,因此需要引入一些跟位置相关的概念。通常使用边界框(bounding box,bbox)来表示物体的位置,边界框是正好能包含物体的矩形框,如 图4 所示,图中3个人分别对应3个边界框。


图4:边界框

通常有两种格式来表示边界框的位置:

  1. x y x y xyxy xyxy,即 ( x 1 , y 1 , x 2 , y 2 ) (x_1, y_1, x_2, y_2) (x1,y1,x2,y2),其中 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)是矩形框左上角的坐标, ( x 2 , y 2 ) (x_2, y_2) (x2,y2)是矩形框右下角的坐标。图4中3个红色矩形框用xyxy格式表示如下:
  • 左: ( 40.93 , 141.1 , 226.99 , 515.73 ) (40.93, 141.1, 226.99, 515.73) (40.93,141.1,226.99,515.73)
  • 中: ( 214.29 , 325.03 , 399.82 , 631.37 ) (214.29, 325.03, 399.82, 631.37) (214.29,325.03,399.82,631.37)
  • 右: ( 247.2 , 131.62 , 480.0 , 639.32 ) (247.2, 131.62, 480.0, 639.32) (247.2,131.62,480.0,639.32)
  1. x y w h xywh xywh,即 ( x , y , w , h ) (x, y, w, h) (x,y,w,h),其中 ( x , y ) (x, y) (x,y)是矩形框中心点的坐标, w w w是矩形框的宽度, h h h是矩形框的高度。

在检测任务中,训练数据集的标签里会给出目标物体真实边界框所对应的 ( x 1 , y 1 , x 2 , y 2 ) (x_1, y_1, x_2, y_2) (x1,y1,x2,y2),这样的边界框也被称为真实框(ground truth box),如 图4 所示,图中画出了3个人像所对应的真实框。模型会对目标物体可能出现的位置进行预测,由模型预测出的边界框则称为预测框(prediction box)。


注意:

  1. 在阅读代码时,请注意使用的是哪一种格式的表示方式。
  2. 图片坐标的原点在左上角, x x x轴向右为正方向, y y y轴向下为正方向。

要完成一项检测任务,我们通常希望模型能够根据输入的图片,输出一些预测的边界框,以及边界框中所包含的物体的类别或者说属于某个类别的概率,例如这种格式: [ L , P , x 1 , y 1 , x 2 , y 2 ] [L, P, x_1, y_1, x_2, y_2] [L,P,x1,y1,x2,y2],其中 L L L是类别标签, P P P是物体属于该类别的概率。一张输入图片可能会产生多个预测框,接下来让我们一起学习如何完成这项任务。

锚框(Anchor box)

百度飞桨架构师手把手带你零基础实践深度学习——目标检测_第1张图片

锚框与物体边界框不同,是由人们假想出来的一种框。先设定好锚框的大小和形状,再以图像上某一个点为中心画出矩形框。在下图中,以像素点[300, 500]为中心可以使用下面的程序生成3个框,如图中蓝色框所示,其中锚框A1跟人像区域非常接近。

# 画图展示如何绘制边界框和锚框
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.image import imread
import math
%matplotlib inline
# 定义画矩形框的程序    
def draw_rectangle(currentAxis, bbox, edgecolor = 'k', facecolor = 'y', fill=False, linestyle='-'):
    # currentAxis,坐标轴,通过plt.gca()获取
    # bbox,边界框,包含四个数值的list, [x1, y1, x2, y2]
    # edgecolor,边框线条颜色
    # facecolor,填充颜色
    # fill, 是否填充
    # linestype,边框线型
    # patches.Rectangle需要传入左上角坐标、矩形区域的宽度、高度等参数
    rect=patches.Rectangle((bbox[0], bbox[1]), bbox[2]-bbox[0]+1, bbox[3]-bbox[1]+1, linewidth=1,
                           edgecolor=edgecolor,facecolor=facecolor,fill=fill, linestyle=linestyle)
    currentAxis.add_patch(rect)

    
plt.figure(figsize=(10, 10))

filename = '/home/aistudio/work/images/section3/000000086956.jpg'
im = imread(filename)
plt.imshow(im)

# 使用xyxy格式表示物体真实框
bbox1 = [214.29, 325.03, 399.82, 631.37]
bbox2 = [40.93, 141.1, 226.99, 515.73]
bbox3 = [247.2, 131.62, 480.0, 639.32]

currentAxis=plt.gca()

draw_rectangle(currentAxis, bbox1, edgecolor='r')
draw_rectangle(currentAxis, bbox2, edgecolor='r')
draw_rectangle(currentAxis, bbox3,edgecolor='r')

# 绘制锚框
def draw_anchor_box(center, length, scales, ratios, img_height, img_width):
    """
    以center为中心,产生一系列锚框
    其中length指定了一个基准的长度
    scales是包含多种尺寸比例的list
    ratios是包含多种长宽比的list
    img_height和img_width是图片的尺寸,生成的锚框范围不能超出图片尺寸之外
    """
    bboxes = []
    for scale in scales:
        for ratio in ratios:
            h = length*scale*math.sqrt(ratio)
            w = length*scale/math.sqrt(ratio) 
            x1 = max(center[0] - w/2., 0.)
            y1 = max(center[1] - h/2., 0.)
            x2 = min(center[0] + w/2. - 1.0, img_width - 1.0)
            y2 = min(center[1] + h/2. - 1.0, img_height - 1.0)
            print(center[0], center[1], w, h)
            bboxes.append([x1, y1, x2, y2])

    for bbox in bboxes:
        draw_rectangle(currentAxis, bbox, edgecolor = 'b')

img_height = im.shape[0]
img_width = im.shape[1]        
draw_anchor_box([300., 500.], 100., [2.0], [0.5, 1.0, 2.0], img_height, img_width)


################# 以下为添加文字说明和箭头###############################

plt.text(285, 285, 'G1', color='red', fontsize=20)
plt.arrow(300, 288, 30, 40, color='red', width=0.001, length_includes_head=True, \
         head_width=5, head_length=10, shape='full')

plt.text(190, 320, 'A1', color='blue', fontsize=20)
plt.arrow(200, 320, 30, 40, color='blue', width=0.001, length_includes_head=True, \
         head_width=5, head_length=10, shape='full')

plt.text(160, 370, 'A2', color='blue', fontsize=20)
plt.arrow(170, 370, 30, 40, color='blue', width=0.001, length_includes_head=True, \
         head_width=5, head_length=10, shape='full')

plt.text(115, 420, 'A3', color='blue', fontsize=20)
plt.arrow(127, 420, 30, 40, color='blue', width=0.001, length_includes_head=True, \
         head_width=5, head_length=10, shape='full')

#draw_anchor_box([200., 200.], 100., [2.0], [0.5, 1.0, 2.0])    
plt.show()


百度飞桨架构师手把手带你零基础实践深度学习——目标检测_第2张图片
在目标检测任务中,通常会以某种规则在图片上生成一系列锚框,将这些锚框当成可能的候选区域。模型对这些候选区域是否包含物体进行预测,如果包含目标物体,则还需要进一步预测出物体所属的类别。还有更为重要的一点是,由于锚框位置是固定的,它不大可能刚好跟物体边界框重合,所以需要在锚框的基础上进行微调以形成能准确描述物体位置的预测框,模型需要预测出微调的幅度。在训练过程中,模型通过学习不断的调整参数,最终能学会如何判别出锚框所代表的候选区域是否包含物体,如果包含物体的话,物体属于哪个类别,以及物体边界框相对于锚框位置需要调整的幅度。

不同的模型往往有着不同的生成锚框的方式,在后面的内容中,会详细介绍YOLO-V3算法里面产生锚框的规则,理解了它的设计方案,也很容易类推到其它模型上。

交并比

上面我们画出了以点 ( 300 , 500 ) (300, 500) (300,500)为中心,生成的三个锚框,我们可以看到锚框A1 与真实框 G1的重合度比较好。那么如何衡量这三个锚框跟真实框之间的关系呢?在检测任务中,使用交并比(Intersection of Union,IoU)作为衡量指标。这一概念来源于数学中的集合,用来描述两个集合 A A A B B B之间的关系,它等于两个集合的交集里面所包含的元素个数,除以它们的并集里面所包含的元素个数,具体计算公式如下:

I o U = A ∩ B A ∪ B IoU = \frac{A\cap B}{A \cup B} IoU=ABAB

我们将用这个概念来描述两个框之间的重合度。两个框可以看成是两个像素的集合,它们的交并比等于两个框重合部分的面积除以它们合并起来的面积。下图“交集”中青色区域是两个框的重合面积,图“并集”中蓝色区域是两个框的相并面积。用这两个面积相除即可得到它们之间的交并比,如 图5 所示。



图5:交并比

假设两个矩形框A和B的位置分别为:
A : [ x a 1 , y a 1 , x a 2 , y a 2 ] A: [x_{a1}, y_{a1}, x_{a2}, y_{a2}] A:[xa1,ya1,xa2,ya2]

B : [ x b 1 , y b 1 , x b 2 , y b 2 ] B: [x_{b1}, y_{b1}, x_{b2}, y_{b2}] B:[xb1,yb1,xb2,yb2]

假如位置关系如 图6 所示:


图6:计算交并比

如果二者有相交部分,则相交部分左上角坐标为:
x 1 = m a x ( x a 1 , x b 1 ) ,       y 1 = m a x ( y a 1 , y b 1 ) x_1 = max(x_{a1}, x_{b1}), \ \ \ \ \ y_1 = max(y_{a1}, y_{b1}) x1=max(xa1,xb1),     y1=max(ya1,yb1)

相交部分右下角坐标为:
x 2 = m i n ( x a 2 , x b 2 ) ,       y 2 = m i n ( y a 2 , y b 2 ) x_2 = min(x_{a2}, x_{b2}), \ \ \ \ \ y_2 = min(y_{a2}, y_{b2}) x2=min(xa2,xb2),     y2=min(ya2,yb2)

计算先交部分面积:
i n t e r s e c t i o n = m a x ( x 2 − x 1 + 1.0 , 0 ) ⋅ m a x ( y 2 − y 1 + 1.0 , 0 ) intersection = max(x_2 - x_1 + 1.0, 0) \cdot max(y_2 - y_1 + 1.0, 0) intersection=max(x2x1+1.0,0)max(y2y1+1.0,0)

矩形框A和B的面积分别是:
S A = ( x a 2 − x a 1 + 1.0 ) ⋅ ( y a 2 − y a 1 + 1.0 ) S_A = (x_{a2} - x_{a1} + 1.0) \cdot (y_{a2} - y_{a1} + 1.0) SA=(xa2xa1+1.0)(ya2ya1+1.0)

S B = ( x b 2 − x b 1 + 1.0 ) ⋅ ( y b 2 − y b 1 + 1.0 ) S_B = (x_{b2} - x_{b1} + 1.0) \cdot (y_{b2} - y_{b1} + 1.0) SB=(xb2xb1+1.0)(yb2yb1+1.0)

计算相并部分面积:
u n i o n = S A + S B − i n t e r s e c t i o n union = S_A + S_B - intersection union=SA+SBintersection

计算交并比:

I o U = i n t e r s e c t i o n u n i o n IoU = \frac{intersection}{union} IoU=unionintersection


思考:

两个矩形框之间的相对位置关系,除了上面的示意图之外,还有哪些可能,上面的公式能否覆盖所有的情形?


交并比计算程序如下:

# 计算IoU,矩形框的坐标形式为xyxy,这个函数会被保存在box_utils.py文件中
def box_iou_xyxy(box1, box2):
    # 获取box1左上角和右下角的坐标
    x1min, y1min, x1max, y1max = box1[0], box1[1], box1[2], box1[3]
    # 计算box1的面积
    s1 = (y1max - y1min + 1.) * (x1max - x1min + 1.)
    # 获取box2左上角和右下角的坐标
    x2min, y2min, x2max, y2max = box2[0], box2[1], box2[2], box2[3]
    # 计算box2的面积
    s2 = (y2max - y2min + 1.) * (x2max - x2min + 1.)
    
    # 计算相交矩形框的坐标
    xmin = np.maximum(x1min, x2min)
    ymin = np.maximum(y1min, y2min)
    xmax = np.minimum(x1max, x2max)
    ymax = np.minimum(y1max, y2max)
    # 计算相交矩形行的高度、宽度、面积
    inter_h = np.maximum(ymax - ymin + 1., 0.)
    inter_w = np.maximum(xmax - xmin + 1., 0.)
    intersection = inter_h * inter_w
    # 计算相并面积
    union = s1 + s2 - intersection
    # 计算交并比
    iou = intersection / union
    return iou


bbox1 = [100., 100., 200., 200.]
bbox2 = [120., 120., 220., 220.]
iou = box_iou_xyxy(bbox1, bbox2)
print('IoU is {}'.format(iou))  
# 计算IoU,矩形框的坐标形式为xywh
def box_iou_xywh(box1, box2):
    x1min, y1min = box1[0] - box1[2]/2.0, box1[1] - box1[3]/2.0
    x1max, y1max = box1[0] + box1[2]/2.0, box1[1] + box1[3]/2.0
    s1 = box1[2] * box1[3]

    x2min, y2min = box2[0] - box2[2]/2.0, box2[1] - box2[3]/2.0
    x2max, y2max = box2[0] + box2[2]/2.0, box2[1] + box2[3]/2.0
    s2 = box2[2] * box2[3]

    xmin = np.maximum(x1min, x2min)
    ymin = np.maximum(y1min, y2min)
    xmax = np.minimum(x1max, x2max)
    ymax = np.minimum(y1max, y2max)
    inter_h = np.maximum(ymax - ymin, 0.)
    inter_w = np.maximum(xmax - xmin, 0.)
    intersection = inter_h * inter_w

    union = s1 + s2 - intersection
    iou = intersection / union
    return iou

林业病虫害数据集和数据预处理方法介绍

在本次的课程中,将使用百度与林业大学合作开发的林业病虫害防治项目中用到昆虫数据集。在这一小节中将为读者介绍该数据集,以及计算机视觉任务中常用的数据预处理方法。

读取AI识虫数据集标注信息

AI识虫数据集结构如下:

  • 提供了2183张图片,其中训练集1693张,验证集245,测试集245张。
  • 包含7种昆虫,分别是Boerner、Leconte、Linnaeus、acuminatus、armandi、coleoptera和linnaeus。
  • 包含了图片和标注,请读者先将数据解压,并存放在insects目录下。

将数据解压之后,可以看到insects目录下的结构如下所示。

    insects
        |---train
        |         |---annotations
        |         |         |---xmls
        |         |                  |---100.xml
        |         |                  |---101.xml
        |         |                  |---...
        |         |
        |         |---images
        |                   |---100.jpeg
        |                   |---101.jpeg
        |                   |---...
        |
        |---val
        |        |---annotations
        |        |         |---xmls
        |        |                  |---1221.xml
        |        |                  |---1277.xml
        |        |                  |---...
        |        |
        |        |---images
        |                  |---1221.jpeg
        |                  |---1277.jpeg
        |                  |---...
        |
        |---test
                 |---images
                           |---1833.jpeg
                           |---1838.jpeg
                           |---...

insects包含train、val和test三个文件夹。train/annotations/xmls目录下存放着图片的标注。每个xml文件是对一张图片的说明,包括图片尺寸、包含的昆虫名称、在图片上出现的位置等信息。


        刘霏霏
        100.jpeg
        /home/fion/桌面/刘霏霏/100.jpeg
        
                Unknown
        
        
                1336
                1336
                3
        
        0
        
                Boerner
                Unspecified
                0
                0
                
                        500
                        893
                        656
                        966
                
        
        
                Leconte
                Unspecified
                0
                0
                
                        622
                        490
                        756
                        610
                
        
        
                armandi
                Unspecified
                0
                0
                
                        432
                        663
                        517
                        729
                
        
        
                coleoptera
                Unspecified
                0
                0
                
                        624
                        685
                        697
                        771
                
        
        
                linnaeus
                Unspecified
                0
                0
                
                        783
                        700
                        856
                        802
                
        

下面我们将从数据集中读取xml文件,将每张图片的标注信息读取出来。在读取具体的标注文件之前,我们先完成一件事情,就是将昆虫的类别名字(字符串)转化成数字表示的类别。因为神经网络里面计算时需要的输入类型是数值型的,所以需要将字符串表示的类别转化成具体的数字。昆虫类别名称的列表是:[‘Boerner’, ‘Leconte’, ‘Linnaeus’, ‘acuminatus’, ‘armandi’, ‘coleoptera’, ‘linnaeus’],这里我们约定此列表中:'Boerner’对应类别0,'Leconte’对应类别1,…,'linnaeus’对应类别6。使用下面的程序可以得到表示名称字符串和数字类别之间映射关系的字典。

INSECT_NAMES = ['Boerner', 'Leconte', 'Linnaeus', 
                'acuminatus', 'armandi', 'coleoptera', 'linnaeus']

def get_insect_names():
    """
    return a dict, as following,
        {'Boerner': 0,
         'Leconte': 1,
         'Linnaeus': 2, 
         'acuminatus': 3,
         'armandi': 4,
         'coleoptera': 5,
         'linnaeus': 6
        }
    It can map the insect name into an integer label.
    """
    insect_category2id = {}
    for i, item in enumerate(INSECT_NAMES):
        insect_category2id[item] = i

    return insect_category2id

数据读取和预处理

数据预处理是训练神经网络时非常重要的步骤。合适的预处理方法,可以帮助模型更好的收敛并防止过拟合。首先我们需要从磁盘读入数据,然后需要对这些数据进行预处理,为了保证网络运行的速度,通常还要对数据预处理进行加速。

数据读取

前面已经将图片的所有描述信息保存在records中了,其中每一个元素都包含了一张图片的描述,下面的程序展示了如何根据records里面的描述读取图片及标注。

### 数据读取
import cv2

def get_bbox(gt_bbox, gt_class):
    # 对于一般的检测任务来说,一张图片上往往会有多个目标物体
    # 设置参数MAX_NUM = 50, 即一张图片最多取50个真实框;如果真实
    # 框的数目少于50个,则将不足部分的gt_bbox, gt_class和gt_score的各项数值全设置为0
    MAX_NUM = 50
    gt_bbox2 = np.zeros((MAX_NUM, 4))
    gt_class2 = np.zeros((MAX_NUM,))
    for i in range(len(gt_bbox)):
        gt_bbox2[i, :] = gt_bbox[i, :]
        gt_class2[i] = gt_class[i]
        if i >= MAX_NUM:
            break
    return gt_bbox2, gt_class2

def get_img_data_from_file(record):
    """
    record is a dict as following,
      record = {
            'im_file': img_file,
            'im_id': im_id,
            'h': im_h,
            'w': im_w,
            'is_crowd': is_crowd,
            'gt_class': gt_class,
            'gt_bbox': gt_bbox,
            'gt_poly': [],
            'difficult': difficult
            }
    """
    im_file = record['im_file']
    h = record['h']
    w = record['w']
    is_crowd = record['is_crowd']
    gt_class = record['gt_class']
    gt_bbox = record['gt_bbox']
    difficult = record['difficult']

    img = cv2.imread(im_file)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # check if h and w in record equals that read from img
    assert img.shape[0] == int(h), \
             "image height of {} inconsistent in record({}) and img file({})".format(
               im_file, h, img.shape[0])

    assert img.shape[1] == int(w), \
             "image width of {} inconsistent in record({}) and img file({})".format(
               im_file, w, img.shape[1])

    gt_boxes, gt_labels = get_bbox(gt_bbox, gt_class)

    # gt_bbox 用相对值
    gt_boxes[:, 0] = gt_boxes[:, 0] / float(w)
    gt_boxes[:, 1] = gt_boxes[:, 1] / float(h)
    gt_boxes[:, 2] = gt_boxes[:, 2] / float(w)
    gt_boxes[:, 3] = gt_boxes[:, 3] / float(h)
  
    return img, gt_boxes, gt_labels, (h, w)

单阶段目标检测模型YOLO-V3

上面介绍的R-CNN系列算法需要先产生候选区域,再对候选区域做分类和位置坐标的预测,这类算法被称为两阶段目标检测算法。近几年,很多研究人员相继提出一系列单阶段的检测算法,只需要一个网络即可同时产生候选区域并预测出物体的类别和位置坐标。

与R-CNN系列算法不同,YOLO-V3使用单个网络结构,在产生候选区域的同时即可预测出物体类别和位置,不需要分成两阶段来完成检测任务。另外,YOLO-V3算法产生的预测框数目比Faster R-CNN少很多。Faster R-CNN中每个真实框可能对应多个标签为正的候选区域,而YOLO-V3里面每个真实框只对应一个正的候选区域。这些特性使得YOLO-V3算法具有更快的速度,能到达实时响应的水平。

Joseph Redmon等人在2015年提出YOLO(You Only Look Once,YOLO)算法,通常也被称为YOLO-V1;2016年,他们对算法进行改进,又提出YOLO-V2版本;2018年发展出YOLO-V3版本。

YOLO-V3 模型设计思想

YOLO-V3算法的基本思想可以分成两部分:

  • 按一定规则在图片上产生一系列的候选区域,然后根据这些候选区域与图片上物体真实框之间的位置关系对候选区域进行标注。跟真实框足够接近的那些候选区域会被标注为正样本,同时将真实框的位置作为正样本的位置目标。偏离真实框较大的那些候选区域则会被标注为负样本,负样本不需要预测位置或者类别。
  • 使用卷积神经网络提取图片特征并对候选区域的位置和类别进行预测。这样每个预测框就可以看成是一个样本,根据真实框相对它的位置和类别进行了标注而获得标签值,通过网络模型预测其位置和类别,将网络预测值和标签值进行比较,就可以建立起损失函数。

YOLO-V3算法训练过程的流程图如 图8 所示:



图8:YOLO-V3算法训练流程图

  • 图8 左边是输入图片,上半部分所示的过程是使用卷积神经网络对图片提取特征,随着网络不断向前传播,特征图的尺寸越来越小,每个像素点会代表更加抽象的特征模式,直到输出特征图,其尺寸减小为原图的 1 32 \frac{1}{32} 321
  • 图8 下半部分描述了生成候选区域的过程,首先将原图划分成多个小方块,每个小方块的大小是 32 × 32 32 \times 32 32×32,然后以每个小方块为中心分别生成一系列锚框,整张图片都会被锚框覆盖到。在每个锚框的基础上产生一个与之对应的预测框,根据锚框和预测框与图片上物体真实框之间的位置关系,对这些预测框进行标注。
  • 将上方支路中输出的特征图与下方支路中产生的预测框标签建立关联,创建损失函数,开启端到端的训练过程。

接下来具体介绍流程中各节点的原理和代码实现。

产生候选区域

如何产生候选区域,是检测模型的核心设计方案。目前大多数基于卷积神经网络的模型所采用的方式大体如下:

  • 按一定的规则在图片上生成一系列位置固定的锚框,将这些锚框看作是可能的候选区域。
  • 对锚框是否包含目标物体进行预测,如果包含目标物体,还需要预测所包含物体的类别,以及预测框相对于锚框位置需要调整的幅度。

生成锚框

将原始图片划分成 m × n m\times n m×n个区域,如下图所示,原始图片高度 H = 640 H=640 H=640, 宽度 W = 480 W=480 W=480,如果我们选择小块区域的尺寸为 32 × 32 32 \times 32 32×32,则 m m m n n n分别为:

m = 640 32 = 20 m = \frac{640}{32} = 20 m=32640=20

n = 480 32 = 15 n = \frac{480}{32} = 15 n=32480=15

图9 所示,将原始图像分成了20行15列小方块区域。



图9:将图片划分成多个32x32的小方块

YOLO-V3算法会在每个区域的中心,生成一系列锚框。为了展示方便,我们先在图中第十行第四列的小方块位置附近画出生成的锚框,如 图10 所示。


注意:

这里为了跟程序中的编号对应,最上面的行号是第0行,最左边的列号是第0列**




图10:在第10行第4列的小方块区域生成3个锚框

图11 展示在每个区域附近都生成3个锚框,很多锚框堆叠在一起可能不太容易看清楚,但过程跟上面类似,只是需要以每个区域的中心点为中心,分别生成3个锚框。



图11:在每个小方块区域生成3个锚框

生成预测框

在前面已经指出,锚框的位置都是固定好的,不可能刚好跟物体边界框重合,需要在锚框的基础上进行位置的微调以生成预测框。预测框相对于锚框会有不同的中心位置和大小,采用什么方式能得到预测框呢?我们先来考虑如何生成其中心位置坐标。

比如上面图中在第10行第4列的小方块区域中心生成的一个锚框,如绿色虚线框所示。以小方格的宽度为单位长度,

此小方块区域左上角的位置坐标是:
c x = 4 c_x = 4 cx=4
c y = 10 c_y = 10 cy=10

此锚框的区域中心坐标是:
c e n t e r _ x = c x + 0.5 = 4.5 center\_x = c_x + 0.5 = 4.5 center_x=cx+0.5=4.5
c e n t e r _ y = c y + 0.5 = 10.5 center\_y = c_y + 0.5 = 10.5 center_y=cy+0.5=10.5

可以通过下面的方式生成预测框的中心坐标:
b x = c x + σ ( t x ) b_x = c_x + \sigma(t_x) bx=cx+σ(tx)
b y = c y + σ ( t y ) b_y = c_y + \sigma(t_y) by=cy+σ(ty)

其中 t x t_x tx t y t_y ty为实数, σ ( x ) \sigma(x) σ(x)是我们之前学过的Sigmoid函数,其定义如下:

σ ( x ) = 1 1 + e x p ( − x ) \sigma(x) = \frac{1}{1 + exp(-x)} σ(x)=1+exp(x)1

由于Sigmoid的函数值在 0 ∼ 1 0 \thicksim 1 01之间,因此由上面公式计算出来的预测框的中心点总是落在第十行第四列的小区域内部。

t x = t y = 0 t_x=t_y=0 tx=ty=0时, b x = c x + 0.5 b_x = c_x + 0.5 bx=cx+0.5 b y = c y + 0.5 b_y = c_y + 0.5 by=cy+0.5,预测框中心与锚框中心重合,都是小区域的中心。

锚框的大小是预先设定好的,在模型中可以当作是超参数,下图中画出的锚框尺寸是

p h = 350 p_h = 350 ph=350
p w = 250 p_w = 250 pw=250

通过下面的公式生成预测框的大小:

b h = p h e t h b_h = p_h e^{t_h} bh=pheth
b w = p w e t w b_w = p_w e^{t_w} bw=pwetw

如果 t x = t y = 0 , t h = t w = 0 t_x=t_y=0, t_h=t_w=0 tx=ty=0,th=tw=0,则预测框跟锚框重合。

如果给 t x , t y , t h , t w t_x, t_y, t_h, t_w tx,ty,th,tw随机赋值如下:

t x = 0.2 , t y = 0.3 , t w = 0.1 , t h = − 0.12 t_x = 0.2, t_y = 0.3, t_w = 0.1, t_h = -0.12 tx=0.2,ty=0.3,tw=0.1,th=0.12

则可以得到预测框的坐标是(154.98, 357.44, 276.29, 310.42),如 图12 中蓝色框所示。


说明:
这里坐标采用 x y w h xywh xywh的格式。




图12:生成预测框

这里我们会问:当 t x , t y , t w , t h t_x, t_y, t_w, t_h tx,ty,tw,th取值为多少的时候,预测框能够跟真实框重合?为了回答问题,只需要将上面预测框坐标中的 b x , b y , b h , b w b_x, b_y, b_h, b_w bx,by,bh,bw设置为真实框的位置,即可求解出 t t t的数值。

令:
σ ( t x ∗ ) + c x = g t x \sigma(t^*_x) + c_x = gt_x σ(tx)+cx=gtx
σ ( t y ∗ ) + c y = g t y \sigma(t^*_y) + c_y = gt_y σ(ty)+cy=gty
p w e t w ∗ = g t h p_w e^{t^*_w} = gt_h pwetw=gth
p h e t h ∗ = g t w p_h e^{t^*_h} = gt_w pheth=gtw

可以求解出 ( t x ∗ , t y ∗ , t w ∗ , t h ∗ ) (t^*_x, t^*_y, t^*_w, t^*_h) (tx,ty,tw,th)

如果 t t t是网络预测的输出值,将 t ∗ t^* t作为目标值,以他们之间的差距作为损失函数,则可以建立起一个回归问题,通过学习网络参数,使得 t t t足够接近 t ∗ t^* t,从而能够求解出预测框的位置坐标和大小。

预测框可以看作是在锚框基础上的一个微调,每个锚框会有一个跟它对应的预测框,我们需要确定上面计算式中的 t x , t y , t w , t h t_x, t_y, t_w, t_h tx,ty,tw,th,从而计算出与锚框对应的预测框的位置和形状。

标注锚框是否包含物体

图13 所示,这里一共有3个目标,以最左边的人像为例,其真实框是 ( 40.93 , 141.1 , 186.06 , 374.63 ) (40.93, 141.1, 186.06, 374.63) (40.93,141.1,186.06,374.63)


图13:选出与真实框中心位于同一区域的锚框

真实框的中心点坐标是:

c e n t e r _ x = 40.93 + 186.06 / 2 = 133.96 center\_x = 40.93 + 186.06 / 2 = 133.96 center_x=40.93+186.06/2=133.96

c e n t e r _ y = 141.1 + 374.63 / 2 = 328.42 center\_y = 141.1 + 374.63 / 2 = 328.42 center_y=141.1+374.63/2=328.42

i = 133.96 / 32 = 4.18625 i = 133.96 / 32 = 4.18625 i=133.96/32=4.18625

j = 328.42 / 32 = 10.263125 j = 328.42 / 32 = 10.263125 j=328.42/32=10.263125

它落在了第10行第4列的小方块内,如图13所示。此小方块区域可以生成3个不同形状的锚框,其在图上的编号和大小分别是 A 1 ( 116 , 90 ) , A 2 ( 156 , 198 ) , A 3 ( 373 , 326 ) A_1(116, 90), A_2(156, 198), A_3(373, 326) A1(116,90),A2(156,198),A3(373,326)

用这3个不同形状的锚框跟真实框计算IoU,选出IoU最大的锚框。这里为了简化计算,只考虑锚框的形状,不考虑其跟真实框中心之间的偏移,具体计算结果如 图14 所示。



图14:选出与真实框与锚框的IoU

其中跟真实框IoU最大的是锚框 A 3 A_3 A3,形状是 ( 373 , 326 ) (373, 326) (373,326),将它所对应的预测框的objectness标签设置为1,其所包括的物体类别就是真实框里面的物体所属类别。

依次可以找出其他几个真实框对应的IoU最大的锚框,然后将它们的预测框的objectness标签也都设置为1。这里一共有 20 × 15 × 3 = 900 20 \times 15 \times 3 = 900 20×15×3=900个锚框,只有3个预测框会被标注为正。

由于每个真实框只对应一个objectness标签为正的预测框,如果有些预测框跟真实框之间的IoU很大,但并不是最大的那个,那么直接将其objectness标签设置为0当作负样本,可能并不妥当。为了避免这种情况,YOLO-V3算法设置了一个IoU阈值iou_threshold,当预测框的objectness不为1,但是其与某个真实框的IoU大于iou_threshold时,就将其objectness标签设置为-1,不参与损失函数的计算。

所有其他的预测框,其objectness标签均设置为0,表示负类。

对于objectness=1的预测框,需要进一步确定其位置和包含物体的具体分类标签,但是对于objectness=0或者-1的预测框,则不用管他们的位置和类别。

标注预测框的位置坐标标签

当锚框objectness=1时,需要确定预测框位置相对于它微调的幅度,也就是锚框的位置标签。

在前面我们已经问过这样一个问题:当 t x , t y , t w , t h t_x, t_y, t_w, t_h tx,ty,tw,th取值为多少的时候,预测框能够跟真实框重合?其做法是将预测框坐标中的 b x , b y , b h , b w b_x, b_y, b_h, b_w bx,by,bh,bw设置为真实框的坐标,即可求解出 t t t的数值。

令:
σ ( t x ∗ ) + c x = g t x \sigma(t^*_x) + c_x = gt_x σ(tx)+cx=gtx
σ ( t y ∗ ) + c y = g t y \sigma(t^*_y) + c_y = gt_y σ(ty)+cy=gty
p w e t w ∗ = g t w p_w e^{t^*_w} = gt_w pwetw=gtw
p h e t h ∗ = g t h p_h e^{t^*_h} = gt_h pheth=gth

对于 t x ∗ t_x^* tx t y ∗ t_y^* ty,由于Sigmoid的反函数不好计算,我们直接使用 σ ( t x ∗ ) \sigma(t^*_x) σ(tx) σ ( t y ∗ ) \sigma(t^*_y) σ(ty)作为回归的目标。

d x ∗ = σ ( t x ∗ ) = g t x − c x d_x^* = \sigma(t^*_x) = gt_x - c_x dx=σ(tx)=gtxcx

d y ∗ = σ ( t y ∗ ) = g t y − c y d_y^* = \sigma(t^*_y) = gt_y - c_y dy=σ(ty)=gtycy

t w ∗ = l o g ( g t w p w ) t^*_w = log(\frac{gt_w}{p_w}) tw=log(pwgtw)

t h ∗ = l o g ( g t h p h ) t^*_h = log(\frac{gt_h}{p_h}) th=log(phgth)

如果 ( t x , t y , t h , t w ) (t_x, t_y, t_h, t_w) (tx,ty,th,tw)是网络预测的输出值,将 ( d x ∗ , d y ∗ , t w ∗ , t h ∗ ) (d_x^*, d_y^*, t_w^*, t_h^*) (dx,dy,tw,th)作为 ( σ ( t x ) , σ ( t y ) , t h , t w ) (\sigma(t_x), \sigma(t_y), t_h, t_w) (σ(tx),σ(ty),th,tw)的目标值,以它们之间的差距作为损失函数,则可以建立起一个回归问题,通过学习网络参数,使得 t t t足够接近 t ∗ t^* t,从而能够求解出预测框的位置。

标注锚框包含物体类别的标签

对于objectness=1的锚框,需要确定其具体类别。正如上面所说,objectness标注为1的锚框,会有一个真实框跟它对应,该锚框所属物体类别,即是其所对应的真实框包含的物体类别。这里使用one-hot向量来表示类别标签label。比如一共有10个分类,而真实框里面包含的物体类别是第2类,则label为 ( 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) (0,1,0,0,0,0,0,0,0,0) (0,1,0,0,0,0,0,0,0,0)

对上述步骤进行总结,标注的流程如 图15 所示。


图15:标注流程示意图

通过这种方式,我们在每个小方块区域都生成了一系列的锚框作为候选区域,并且根据图片上真实物体的位置,标注出了每个候选区域对应的objectness标签、位置需要调整的幅度以及包含的物体所属的类别。位置需要调整的幅度由4个变量描述 ( t x , t y , t w , t h ) (t_x, t_y, t_w, t_h) (tx,ty,tw,th),objectness标签需要用一个变量描述 o b j obj obj,描述所属类别的变量长度等于类别数C。

对于每个锚框,模型需要预测输出 ( t x , t y , t w , t h , P o b j , P 1 , P 2 , . . . , P C ) (t_x, t_y, t_w, t_h, P_{obj}, P_1, P_2,... , P_C) (tx,ty,tw,th,Pobj,P1,P2,...,PC),其中 P o b j P_{obj} Pobj是锚框是否包含物体的概率, P 1 , P 2 , . . . , P C P_1, P_2,... , P_C P1,P2,...,PC则是锚框包含的物体属于每个类别的概率。接下来让我们一起学习如何通过卷积神经网络输出这样的预测值。

卷积神经网络提取特征

在上一节图像分类的课程中,我们已经学习过了通过卷积神经网络提取图像特征。通过连续使用多层卷积和池化等操作,能得到语义含义更加丰富的特征图。在检测问题中,也使用卷积神经网络逐层提取图像特征,通过最终的输出特征图来表征物体位置和类别等信息。

YOLO-V3算法使用的骨干网络是Darknet53。Darknet53网络的具体结构如 图16 所示,在ImageNet图像分类任务上取得了很好的成绩。在检测任务中,将图中C0后面的平均池化、全连接层和Softmax去掉,保留从输入到C0部分的网络结构,作为检测模型的基础网络结构,也称为骨干网络。YOLO-V3模型会在骨干网络的基础上,再添加检测相关的网络模块。



图16:Darknet53网络结构

下面的程序是Darknet53骨干网络的实现代码,这里将上图中C0、C1、C2所表示的输出数据取出,并查看它们的形状分别是, C 0 [ 1 , 1024 , 20 , 20 ] C0 [1, 1024, 20, 20] C0[1,1024,20,20] C 1 [ 1 , 512 , 40 , 40 ] C1 [1, 512, 40, 40] C1[1,512,40,40] C 2 [ 1 , 256 , 80 , 80 ] C2 [1, 256, 80, 80] C2[1,256,80,80]

  • 名词解释:特征图的步幅(stride)

在提取特征的过程中通常会使用步幅大于1的卷积或者池化,导致后面的特征图尺寸越来越小,特征图的步幅等于输入图片尺寸除以特征图尺寸。例如C0的尺寸是 20 × 20 20\times20 20×20,原图尺寸是 640 × 640 640\times640 640×640,则C0的步幅是 640 20 = 32 \frac{640}{20}=32 20640=32。同理,C1的步幅是16,C2的步幅是8。

import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from paddle.fluid.dygraph.nn import Conv2D, BatchNorm
from paddle.fluid.dygraph.base import to_variable

# YOLO-V3骨干网络结构Darknet53的实现代码

class ConvBNLayer(fluid.dygraph.Layer):
    """
    卷积 + 批归一化,BN层之后激活函数默认用leaky_relu
    """
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size=3,
                 stride=1,
                 groups=1,
                 padding=0,
                 act="leaky",
                 is_test=True):
        super(ConvBNLayer, self).__init__()

        self.conv = Conv2D(
            num_channels=ch_in,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Normal(0., 0.02)),
            bias_attr=False,
            act=None)

        self.batch_norm = BatchNorm(
            num_channels=ch_out,
            is_test=is_test,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Normal(0., 0.02),
                regularizer=L2Decay(0.)),
            bias_attr=ParamAttr(
                initializer=fluid.initializer.Constant(0.0),
                regularizer=L2Decay(0.)))
        self.act = act

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.batch_norm(out)
        if self.act == 'leaky':
            out = fluid.layers.leaky_relu(x=out, alpha=0.1)
        return out

class DownSample(fluid.dygraph.Layer):
    """
    下采样,图片尺寸减半,具体实现方式是使用stirde=2的卷积
    """
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size=3,
                 stride=2,
                 padding=1,
                 is_test=True):

        super(DownSample, self).__init__()

        self.conv_bn_layer = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            is_test=is_test)
        self.ch_out = ch_out
    def forward(self, inputs):
        out = self.conv_bn_layer(inputs)
        return out

class BasicBlock(fluid.dygraph.Layer):
    """
    基本残差块的定义,输入x经过两层卷积,然后接第二层卷积的输出和输入x相加
    """
    def __init__(self, ch_in, ch_out, is_test=True):
        super(BasicBlock, self).__init__()

        self.conv1 = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test
            )
        self.conv2 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test
            )
    def forward(self, inputs):
        conv1 = self.conv1(inputs)
        conv2 = self.conv2(conv1)
        out = fluid.layers.elementwise_add(x=inputs, y=conv2, act=None)
        return out

class LayerWarp(fluid.dygraph.Layer):
    """
    添加多层残差块,组成Darknet53网络的一个层级
    """
    def __init__(self, ch_in, ch_out, count, is_test=True):
        super(LayerWarp,self).__init__()

        self.basicblock0 = BasicBlock(ch_in,
            ch_out,
            is_test=is_test)
        self.res_out_list = []
        for i in range(1, count):
            res_out = self.add_sublayer("basic_block_%d" % (i), #使用add_sublayer添加子层
                BasicBlock(ch_out*2,
                    ch_out,
                    is_test=is_test))
            self.res_out_list.append(res_out)

    def forward(self,inputs):
        y = self.basicblock0(inputs)
        for basic_block_i in self.res_out_list:
            y = basic_block_i(y)
        return y

DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}

class DarkNet53_conv_body(fluid.dygraph.Layer):
    def __init__(self,
                 
                 is_test=True):
        super(DarkNet53_conv_body, self).__init__()
        self.stages = DarkNet_cfg[53]
        self.stages = self.stages[0:5]

        # 第一层卷积
        self.conv0 = ConvBNLayer(
            ch_in=3,
            ch_out=32,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test)

        # 下采样,使用stride=2的卷积来实现
        self.downsample0 = DownSample(
            ch_in=32,
            ch_out=32 * 2,
            is_test=is_test)

        # 添加各个层级的实现
        self.darknet53_conv_block_list = []
        self.downsample_list = []
        for i, stage in enumerate(self.stages):
            conv_block = self.add_sublayer(
                "stage_%d" % (i),
                LayerWarp(32*(2**(i+1)),
                32*(2**i),
                stage,
                is_test=is_test))
            self.darknet53_conv_block_list.append(conv_block)
        # 两个层级之间使用DownSample将尺寸减半
        for i in range(len(self.stages) - 1):
            downsample = self.add_sublayer(
                "stage_%d_downsample" % i,
                DownSample(ch_in=32*(2**(i+1)),
                    ch_out=32*(2**(i+2)),
                    is_test=is_test))
            self.downsample_list.append(downsample)

    def forward(self,inputs):
        out = self.conv0(inputs)
        #print("conv1:",out.numpy())
        out = self.downsample0(out)
        #print("dy:",out.numpy())
        blocks = []
        for i, conv_block_i in enumerate(self.darknet53_conv_block_list): #依次将各个层级作用在输入上面
            out = conv_block_i(out)
            blocks.append(out)
            if i < len(self.stages) - 1:
                out = self.downsample_list[i](out)
        return blocks[-1:-4:-1] # 将C0, C1, C2作为返回值

根据输出特征图计算预测框位置和类别

YOLO-V3中对每个预测框计算逻辑如下:

  • 预测框是否包含物体。也可理解为objectness=1的概率是多少,可以用网络输出一个实数 x x x,可以用 S i g m o i d ( x ) Sigmoid(x) Sigmoid(x)表示objectness为正的概率 P o b j P_{obj} Pobj

  • 预测物体位置和形状。物体位置和形状 t x , t y , t w , t h t_x, t_y, t_w, t_h tx,ty,tw,th可以用网络输出4个实数来表示 t x , t y , t w , t h t_x, t_y, t_w, t_h tx,ty,tw,th

  • 预测物体类别。预测图像中物体的具体类别是什么,或者说其属于每个类别的概率分别是多少。总的类别数为C,需要预测物体属于每个类别的概率 ( P 1 , P 2 , . . . , P C ) (P_1, P_2, ..., P_C) (P1,P2,...,PC),可以用网络输出C个实数 ( x 1 , x 2 , . . . , x C ) (x_1, x_2, ..., x_C) (x1,x2,...,xC),对每个实数分别求Sigmoid函数,让 P i = S i g m o i d ( x i ) P_i = Sigmoid(x_i) Pi=Sigmoid(xi),则可以表示出物体属于每个类别的概率。

对于一个预测框,网络需要输出 ( 5 + C ) (5 + C) (5+C)个实数来表征它是否包含物体、位置和形状尺寸以及属于每个类别的概率。

由于我们在每个小方块区域都生成了K个预测框,则所有预测框一共需要网络输出的预测值数目是:

[ K ( 5 + C ) ] × m × n [K(5 + C)] \times m \times n [K(5+C)]×m×n

还有更重要的一点是网络输出必须要能区分出小方块区域的位置来,不能直接将特征图连接一个输出大小为 [ K ( 5 + C ) ] × m × n [K(5 + C)] \times m \times n [K(5+C)]×m×n的全连接层。

建立输出特征图与预测框之间的关联

现在观察特征图,经过多次卷积核池化之后,其步幅stride=32, 640 × 480 640 \times 480 640×480大小的输入图片变成了 20 × 15 20\times15 20×15的特征图;而小方块区域的数目正好是 20 × 15 20\times15 20×15,也就是说可以让特征图上每个像素点分别跟原图上一个小方块区域对应。这也是为什么我们最开始将小方块区域的尺寸设置为32的原因,这样可以巧妙的将小方块区域跟特征图上的像素点对应起来,解决了空间位置的对应关系。



图17:特征图C0与小方块区域形状对比

下面需要将像素点 ( i , j ) (i,j) (i,j)与第i行第j列的小方块区域所需要的预测值关联起来,每个小方块区域产生K个预测框,每个预测框需要 ( 5 + C ) (5 + C) (5+C)个实数预测值,则每个像素点相对应的要有 K ( 5 + C ) K(5 + C) K(5+C)个实数。为了解决这一问题,对特征图进行多次卷积,并将最终的输出通道数设置为 K ( 5 + C ) K(5 + C) K(5+C),即可将生成的特征图与每个预测框所需要的预测值巧妙的对应起来。

骨干网络的输出特征图是C0,下面的程序是对C0进行多次卷积以得到跟预测框相关的特征图P0。

# 从骨干网络输出特征图C0得到跟预测相关的特征图P0
class YoloDetectionBlock(fluid.dygraph.Layer):
    # define YOLO-V3 detection head
    # 使用多层卷积和BN提取特征
    def __init__(self,ch_in,ch_out,is_test=True):
        super(YoloDetectionBlock, self).__init__()

        assert ch_out % 2 == 0, \
            "channel {} cannot be divided by 2".format(ch_out)

        self.conv0 = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test
            )
        self.conv1 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test
            )
        self.conv2 = ConvBNLayer(
            ch_in=ch_out*2,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test
            )
        self.conv3 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test
            )
        self.route = ConvBNLayer(
            ch_in=ch_out*2,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test
            )
        self.tip = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test
            )
    def forward(self, inputs):
        out = self.conv0(inputs)
        out = self.conv1(out)
        out = self.conv2(out)
        out = self.conv3(out)
        route = self.route(out)
        tip = self.tip(route)
        return route, tip
NUM_ANCHORS = 3
NUM_CLASSES = 7
num_filters=NUM_ANCHORS * (NUM_CLASSES + 5)
with fluid.dygraph.guard():
    backbone = DarkNet53_conv_body(is_test=False)
    detection = YoloDetectionBlock(ch_in=1024, ch_out=512, is_test=False)
    conv2d_pred = Conv2D(num_channels=1024, num_filters=num_filters,  filter_size=1)
    
    x = np.random.randn(1, 3, 640, 640).astype('float32')
    x = to_variable(x)
    C0, C1, C2 = backbone(x)
    route, tip = detection(C0)
    P0 = conv2d_pred(tip)
    
    print(P0.shape)

如上面的代码所示,可以由特征图C0生成特征图P0,P0的形状是 [ 1 , 36 , 20 , 20 ] [1, 36, 20, 20] [1,36,20,20]。每个小方块区域生成的锚框或者预测框的数量是3,物体类别数目是7,每个区域需要的预测值个数是 3 × ( 5 + 7 ) = 36 3 \times (5 + 7) = 36 3×(5+7)=36,正好等于P0的输出通道数。



图18:特征图P0与候选区域的关联

P 0 [ t , 0 : 12 , i , j ] P0[t, 0:12, i, j] P0[t,0:12,i,j]与输入的第t张图片上小方块区域 ( i , j ) (i, j) (i,j)第1个预测框所需要的12个预测值对应, P 0 [ t , 12 : 24 , i , j ] P0[t, 12:24, i, j] P0[t,12:24,i,j]与输入的第t张图片上小方块区域 ( i , j ) (i, j) (i,j)第2个预测框所需要的12个预测值对应, P 0 [ t , 24 : 36 , i , j ] P0[t, 24:36, i, j] P0[t,24:36,i,j]与输入的第t张图片上小方块区域 ( i , j ) (i, j) (i,j)第3个预测框所需要的12个预测值对应。

P 0 [ t , 0 : 4 , i , j ] P0[t, 0:4, i, j] P0[t,0:4,i,j]与输入的第t张图片上小方块区域 ( i , j ) (i, j) (i,j)第1个预测框的位置对应, P 0 [ t , 4 , i , j ] P0[t, 4, i, j] P0[t,4,i,j]与输入的第t张图片上小方块区域 ( i , j ) (i, j) (i,j)第1个预测框的objectness对应, P 0 [ t , 5 : 12 , i , j ] P0[t, 5:12, i, j] P0[t,5:12,i,j]与输入的第t张图片上小方块区域 ( i , j ) (i, j) (i,j)第1个预测框的类别对应。

图18 所示,通过这种方式可以巧妙的将网络输出特征图,与每个小方块区域生成的预测框对应起来了。

你可能感兴趣的:(深度学习)