Multi-Scale Convolutional Neural Networks for Time Series Classification

keywords: 时间序列处理; 深度学习; keras

针对现有时间序列分类方法的特征提取与分类过程分离,且无法提取存在于不同时间尺度序列的不同特征的问题,作者提出MCNN模型。
对于单一时间序列输入,进行降采样和滑动平均等变化,产生多组长度不同的时间序列,并在多组时间序列上进行卷积,提取不同时间尺度序列的特征。

image
  • Original 表示原始时间序列

  • Multi-Frequency 表示对原始数据滑动平均后的序列

    image
  • Multi-Scale 表示对原始数据降采样后的序列

    image

通过降采样的变换,实现在不同时间尺度的序列上的特征提取。
通过滑动平均的变换,实现对噪音的抵抗性。

加载数据

论文中使用了UCR数据集中的44个任务,首先,根据数据集任务名获取数据集的存储路径。

def get_datasets_path(base_path):
    datasets_used = ['Adiac', 'Beef', 'CBF', 'ChlorineConcentration', 'CinC_ECG_torso', 'Coffee', 'Cricket_X', 'Cricket_Y',
                'Cricket_Z', 'DiatomSizeReduction', 'ECGFiveDays', 'FaceAll', 'FaceFour', 'FacesUCR', '50words',
                'FISH', 'Gun_Point', 'Haptics', 'InlineSkate', 'ItalyPowerDemand', 'Lighting2', 'Lighting7', 'MALLAT',
                'MedicalImages', 'MoteStrain', 'NonInvasiveFatalECG_Thorax1', 'NonInvasiveFatalECG_Thorax2', 'OliveOil',
                'OSULeaf', 'SonyAIBORobotSurface', 'SonyAIBORobotSurfaceII', 'StarLightCurves', 'SwedishLeaf',
                'Symbols',
                'synthetic_control', 'Trace', 'TwoLeadECG', 'Two_Patterns', 'UWaveGestureLibrary_X',
                'UWaveGestureLibrary_Y', 'UWaveGestureLibrary_Z', 'wafer', 'WordSynonyms', 'yoga']
    data_list = os.listdir(base_path)
    return ["%s/%s/%s_" % (base_path, data, data) for data in datasets_used if data in data_list]

数据集分为TRAIN和TEST两个文件,分别存储训练集和测试集。作者使用了一种增加数据规模的技巧,使用滑动窗口在时间序列上截取数据,并共享同一个类别标签,同时增加了测试集和训练集的规模。

def data_augmentation(feature, label, ws):
    seq_len = feature.shape[1]
    aug_feature, aug_label = feature[:, :ws], label
    for i in range(1, seq_len-ws+1):
        _feature = feature[:, i:i+ws]
        aug_feature = np.concatenate((aug_feature, _feature), axis=0)
        aug_label = np.concatenate((aug_label, label), axis=0)
    return aug_feature, aug_label

def load_feature_label(path, aug_times=0):
    data = np.loadtxt(path, dtype=np.float, delimiter=',')
    # the first column is label, and the rest are features
    feature, label = data[:, 1:], data[:, 0]  
    if aug_times>0:
        feature, label = data_augmentation(feature, label, data.shape[1]-aug_times)
    return feature, label

数据变换

降采样

使用一组降采样因子 k1, k2, k3,每隔 ki-1 个数据取一个。

def down_sampling(data, rates):
    ds_seq_len = []
    ds_data = []
    # down sampling by rate k
    for k in rates:
        if k > data.shape[1] / 3:
            break

        _data = data[:, ::k]  # temp after down sampling
        ds_data.append(_data)
        ds_seq_len.append(_data.shape[1])  # remark the length info
    return ds_data, ds_seq_len

滑动平均

使用一组滑动窗口l1, l2, l3,每li个数据取平均。

def moving_average(data, moving_ws):
    num, seq_len = data.shape[0], data.shape[1]
    ma_data = []
    ma_seq_len = []
    for ws in moving_ws:
        if ws>data.shape[1]/3:
            break
        _data = np.zeros((num, seq_len-ws+1))
        for i in range(seq_len-ws+1):
            _data[:, i] = np.mean(data[:, i: i+ws], axis=1)
        ma_data.append(_data)
        ma_seq_len.append(_data.shape[1])
    return ma_data, ma_seq_len

获取MCNN输入

通过多组降频因子k,和滑动窗口l,对原序列进行处理,得到多个时间序列,并在不同时间序列上进行一维卷积操作,提取在不同时间规模下的抽象特征,是该论文的主要思想。

def get_mcnn_input(feature, label):
    origin = feature
    ms_branch, ms_lens = down_sampling(feature, rates=[2, 3, 4, 5])
    mf_branch, mf_lens = moving_average(feature, moving_ws=[5, 8, 11])

    label = np_utils.to_categorical(label)  # one hot
    features = [origin, *ms_branch, *mf_branch]
    features = [data.reshape(data.shape+(1,)) for data in features]
    data_lens = [origin.shape[1], *ms_lens, *mf_lens]
    return features, label

模型定义

mcnn 模型的输入是多个长度不唯一的时间序列,为了减少代码长度,使用列表推导式建立模型。

def MCNN_model(feature_lens, class_num):
    input_sigs = [Input(shape=(bra_len, 1)) for bra_len in feature_lens]
    # local convolution
    ms_sigs = []
    for i in range(len(input_sigs)):
        _ms = Conv1D(padding='same', kernel_size=conv_size, filters=256, activation='relu')(input_sigs[i])
        pooling_size = (_ms.shape[1].value - conv_size + 1) // pooling_factor
        _ms = MaxPooling1D(pool_size=pooling_size)(_ms)
        ms_sigs.append(_ms)
    merged = concatenate(ms_sigs, axis=1)

    # fully convolution
    conved = Conv1D(padding='valid', kernel_size=conv_size, filters=256, activation='relu')(merged)
    pooled = MaxPooling1D(pool_size=5)(conved)

    x = Flatten()(pooled)
    x = Dense(256, activation='relu')(x)
    x = Dense(256, activation='relu')(x)
    x = Dense(class_num, activation='softmax')(x)
    MCNN = Model(inputs=input_sigs, outputs=x)
#     MCNN.summary()
    MCNN.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])
    return MCNN

主函数

def on_single_dataset(data_path):
    data_name = data_path.split('/')[-2]
    # get the origin time series
    f_train, la_tr = load_feature_label(data_path+'TRAIN', aug_times=0)
    f_test, la_te = load_feature_label(data_path+'TEST', aug_times=0)
    f_train, f_test = normalization(f_train, f_test)
    # get the transform sequences
    f_trains, la_tr = get_mcnn_input(f_train, la_tr)
    f_tests, la_te = get_mcnn_input(f_test, la_te)

    feat_lens = [data.shape[1] for data in f_trains]  # get the length info of each transform sequence

    class_num = la_tr.shape[1]
    mcnn = MCNN_model(feat_lens, class_num)
    mcnn.fit(f_trains, la_tr, batch_size=128, epochs=64, verbose=0)
    te_loss, te_acc = mcnn.evaluate(f_tests, la_te, verbose=0)
    print("[%(data)s]: Test loss - %(loss).2f, Test accuracy - %(acc).2f%%" % {'data': data_name, 'loss': te_loss, 'acc': te_acc*100})

    la_pred = mcnn.predict(f_tests)
    for data in f_trains, f_tests, la_te, la_tr:
        del data
    gc.collect()

def main():
    dataPaths = get_datasets_path(base_path)
    for dp in dataPaths:
        on_single_dataset(dp)

https://www.jianshu.com/p/63c9ef510464

你可能感兴趣的:(Multi-Scale Convolutional Neural Networks for Time Series Classification)