开放扩展,封闭修改。增加功能通过增加代码实现,而不是去修改源代码
讲的是设计要对扩展有好的支持,而对修改要严格限制。即对扩展开放,对修改封闭。
开闭原则(Open Closed Principle,OCP)由勃兰特·梅耶(Bertrand Meyer)提出,他在 1988 年的著作《面向对象软件构造》(Object Oriented Software Construction)中提出:软件实体应当对扩展开放,对修改关闭(Software entities should be open for extension,but closed for modification),这就是开闭原则的经典定义。
这里的软件实体包括以下几个部分:
开闭原则的含义是:当应用的需求改变时,在不修改软件实体的源代码或者二进制代码的前提下,可以扩展模块的功能,使其满足新的需求。
开闭原则是面向对象程序设计的终极目标,它使软件实体拥有一定的适应性和灵活性的同时具备稳定性和延续性。具体来说,其作用如下。
可以通过“抽象约束、封装变化”来实现开闭原则,即通过接口或者抽象类为软件实体定义一个相对稳定的抽象层,而将相同的可变因素封装在相同的具体实现类中。
因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节可以从抽象派生来的实现类来进行扩展,当软件需要发生变化时,只需要根据需求重新派生一个实现类来扩展就可以了。
下面以 Windows 的桌面主题为例介绍开闭原则的应用。
【例1】Windows 的桌面主题设计
分析:Windows 的主题是桌面背景图片、窗口颜色和声音等元素的组合。用户可以根据自己的喜爱更换自己的桌面主题,也可以从网上下载新的主题。这些主题有共同的特点,可以为其定义一个抽象类(Abstract Subject),而每个具体的主题(Specific Subject)是其子类。用户窗体可以根据需要选择或者增加新的主题,而不需要修改原代码,所以它是满足开闭原则的,其类图如图 1 所示。
class AbstractCaculator
{
public:
virtual int getResult() = 0;
virtual void setOperatorNum(int, int) = 0;
};
class PlusCacu:public AbstractCaculator
{
public:
virtual void setOperatorNum(int a,int b) {
this->mA = a;
this->mB = b;
}
virtual int getResult() {
return mA + mB;
}
private:
int mA;
int mB;
};
class MinuteCacu :public AbstractCaculator
{
public:
virtual void setOperatorNum(int a, int b) {
this->mA = a;
this->mB = b;
}
virtual int getResult() {
return mA - mB;
}
private:
int mA;
int mB;
};
int main()
{
AbstractCaculator* ab = new PlusCacu();
ab->setOperatorNum(3, 2);
cout<< ab->getResult()<<"\n"; // 5
ab = new MinuteCacu();
ab->setOperatorNum(3, 2);
cout << ab->getResult(); // 1
//如果有其它操作继续添加,而不是修改
}
继承必须确保超类所拥有的性质在子类中仍然成立
里氏替换原则主要阐述了有关继承的一些原则,也就是什么时候应该使用继承,什么时候不应该使用继承,以及其中蕴含的原理。里氏替换原是继承复用的基础,它反映了基类与子类之间的关系,是对开闭原则的补充,是对实现抽象化的具体步骤的规范。
里氏替换原则通俗来讲就是:子类可以扩展父类的功能,但不能改变父类原有的功能。也就是说:子类继承父类时,除添加新的方法完成新增功能外,尽量不要重写父类的方法。
根据上述理解,对里氏替换原则的定义可以总结如下:
通过重写父类的方法来完成新的功能写起来虽然简单,但是整个继承体系的可复用性会比较差,特别是运用多态比较频繁时,程序运行出错的概率会非常大。
如果程序违背了里氏替换原则,则继承类的对象在基类出现的地方会出现运行错误。这时其修正方法是:取消原来的继承关系,重新设计它们之间的关系。
关于里氏替换原则的例子,最有名的是“正方形不是长方形”。当然,生活中也有很多类似的例子,例如,企鹅、鸵鸟和几维鸟从生物学的角度来划分,它们属于鸟类;但从类的继承关系来看,由于它们不能继承“鸟”会飞的功能,所以它们不能定义成“鸟”的子类。同样,由于“气球鱼”不会游泳,所以不能定义成“鱼”的子类;“玩具炮”炸不了敌人,所以不能定义成“炮”的子类等。
上面例子,子类没继承父类方法
https://blog.csdn.net/lord_is_layuping/article/details/7469074?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-4.pc_relevant_antiscanv2&spm=1001.2101.3001.4242.3&utm_relevant_index=7
下面以“几维鸟不是鸟”为例来说明里氏替换原则。
【例1】里氏替换原则在“几维鸟不是鸟”实例中的应用。
分析:鸟一般都会飞行,如燕子的飞行速度大概是每小时 120 千米。但是新西兰的几维鸟由于翅膀退化无法飞行。假如要设计一个实例,计算这两种鸟飞行 300 千米要花费的时间。显然,拿燕子来测试这段代码,结果正确,能计算出所需要的时间;但拿几维鸟来测试,结果会发生“除零异常”或是“无穷大”,明显不符合预期,其类图如图 1 所示。
图1 “几维鸟不是鸟”实例的类图
程序代码如下:
package principle;
public class LSPtest {
public static void main(String[] args) {
Bird bird1 = new Swallow();
Bird bird2 = new BrownKiwi();
bird1.setSpeed(120);
bird2.setSpeed(120);
System.out.println("如果飞行300公里:");
try {
System.out.println("燕子将飞行" + bird1.getFlyTime(300) + "小时.");
System.out.println("几维鸟将飞行" + bird2.getFlyTime(300) + "小时。");
} catch (Exception err) {
System.out.println("发生错误了!");
}
}
}
//鸟类
class Bird {
double flySpeed;
public void setSpeed(double speed) {
flySpeed = speed;
}
public double getFlyTime(double distance) {
return (distance / flySpeed);
}
}
//燕子类
class Swallow extends Bird {
}
//几维鸟类
class BrownKiwi extends Bird {
public void setSpeed(double speed) {
flySpeed = 0;
}
}
程序的运行结果如下:
如果飞行300公里:
燕子将飞行2.5小时.
几维鸟将飞行Infinity小时。
程序运行错误的原因是:几维鸟类重写了鸟类的 setSpeed(double speed) 方法,这违背了里氏替换原则。正确的做法是:取消几维鸟原来的继承关系,定义鸟和几维鸟的更一般的父类,如动物类,它们都有奔跑的能力。几维鸟的飞行速度虽然为 0,但奔跑速度不为 0,可以计算出其奔跑 300 千米所要花费的时间。其类图如图 2 所示。
图2 “几维鸟是动物”实例的类图
依赖倒置原则(Dependence Inversion Principle,DIP)是 Object Mentor 公司总裁罗伯特·马丁(Robert C.Martin)于 1996 年在 C++ Report 上发表的文章。
依赖倒置原则的原始定义为:高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象(High level modules shouldnot depend upon low level modules.Both should depend upon abstractions.Abstractions should not depend upon details. Details should depend upon abstractions)。其核心思想是:要面向接口编程,不要面向实现编程。
依赖倒置原则是实现开闭原则的重要途径之一,它降低了客户与实现模块之间的耦合。
由于在软件设计中,细节具有多变性,而抽象层则相对稳定,因此以抽象为基础搭建起来的架构要比以细节为基础搭建起来的架构要稳定得多。这里的抽象指的是接口或者抽象类,而细节是指具体的实现类。
使用接口或者抽象类的目的是制定好规范和契约,而不去涉及任何具体的操作,把展现细节的任务交给它们的实现类去完成。
依赖、倒置原则的
依赖倒置原则的目的是通过要面向接口的编程来降低类间的耦合性,所以我们在实际编程中只要遵循以下4点,就能在项目中满足这个规则。
下面以“顾客购物程序”为例来说明依赖倒置原则的应用。
【例1】依赖倒置原则在“顾客购物程序”中的应用。
分析:本程序反映了 “顾客类”与“商店类”的关系。商店类中有 sell() 方法,顾客类通过该方法购物以下代码定义了顾客类通过韶关网店 ShaoguanShop 购物:
class Customer {
public void shopping(ShaoguanShop shop) {
//购物
System.out.println(shop.sell());
}
}
但是,这种设计存在缺点,如果该顾客想从另外一家商店(如婺源网店 WuyuanShop)购物,就要将该顾客的代码修改如下:
class Customer {
public void shopping(WuyuanShop shop) {
//购物
System.out.println(shop.sell());
}
}
顾客每更换一家商店,都要修改一次代码,这明显违背了开闭原则。存在以上缺点的原因是:顾客类设计时同具体的商店类绑定了,这违背了依赖倒置原则。解决方法是:定义“婺源网店”和“韶关网店”的共同接口 Shop,顾客类面向该接口编程,其代码修改如下:
class Customer {
public void shopping(Shop shop) {
//购物
System.out.println(shop.sell());
}
}
这样,不管顾客类 Customer 访问什么商店,或者增加新的商店,都不需要修改原有代码了,其类图如图 1 所示。
程序代码如下:
package principle;
public class DIPtest {
public static void main(String[] args) {
Customer wang = new Customer();
System.out.println("顾客购买以下商品:");
wang.shopping(new ShaoguanShop());
wang.shopping(new WuyuanShop());
}
}
//商店
interface Shop {
public String sell(); //卖
}
//韶关网店
class ShaoguanShop implements Shop {
public String sell() {
return "韶关土特产:香菇、木耳……";
}
}
//婺源网店
class WuyuanShop implements Shop {
public String sell() {
return "婺源土特产:绿茶、酒糟鱼……";
}
}
//顾客
class Customer {
public void shopping(Shop shop) {
//购物
System.out.println(shop.sell());
}
}
优点:人的思维本身实际上就是很抽象的,我们分析问题的时候不是一下子就考虑到细节,而是很抽象的将整个问题都构思出来,所以面向抽象设计是符合人的思维的。另外这个原则会很好的支持(开闭原则)OCP,面向抽象的设计使我们能够不必太多依赖于实现,这样扩展就成为了可能,这个原则也是另一篇文章《Design by Contract》的基石。
class BankWorker {
public:
void saveService() {
cout << "办理存款业务" << endl;
}
void payService() {
cout << "办理支付业务" << endl;
}
void tranferService() {
cout << "办理转账业务" << endl;
}
};
#if 0
// 中层模块,一层依赖于一层
void doSaveBussiness(BankWorker* worker) {
worker->saveService();
}
void doPayService(BankWorker* worker) {
worker->payService();
}
void doTranferService(BankWorker* worker) {
worker->tranferService();
}
#endif
---------- // 上面方法代码量大,新功能改动大:定义do函数,还要BankWorker加逻辑
// 下面的新建类,复写dobussiness方法即可
class AbstractWorker {
public:
virtual void doButiness() = 0;
};
class SaveBankWorker : public AbstractWorker
{
public:
virtual void doButiness() {
cout << "办理存款业务" << endl;
}
};
class PayBankWorker : public AbstractWorker
{
public:
virtual void doButiness() {
cout << "办理支付业务" << endl;
}
};
class TranWorker : public AbstractWorker
{
public:
virtual void doButiness() {
cout << "办理转账业务" << endl;
}
};
// 中层业务,面对抽象层
void doNewBusiness(AbstractWorker *worker) {
worker->doButiness();
}
int main() {
//BankWorker* worker = new BankWorker;
//doSaveBussiness(worker);
//doPayService(worker);
//doTranferService(worker);
doNewBusiness(new TranWorker);
doNewBusiness(new PayBankWorker);
doNewBusiness(new SaveBankWorker);
return 0;
}
单一职责原则(Single Responsibility Principle,SRP)又称单一功能原则,由罗伯特·C.马丁(Robert C. Martin)于《敏捷软件开发:原则、模式和实践》一书中提出的。这里的职责是指类变化的原因,单一职责原则规定一个类应该有且仅有一个引起它变化的原因,否则类应该被拆分(There should never be more than one reason for a class to change)。
注意:单一职责同样也适用于方法。一个方法应该尽可能做好一件事情。如果一个方法处理的事情太多,其颗粒度会变得很粗,不利于重用。
该原则提出对象不应该承担太多职责,如果一个对象承担了太多的职责,至少存在以下两个缺点:
单一职责原则的核心就是控制类的粒度大小、将对象解耦、提高其内聚性。如果遵循单一职责原则将有以下优点。
单一职责原则是最简单但又最难运用的原则,需要设计人员发现类的不同职责并将其分离,再封装到不同的类或模块中。而发现类的多重职责需要设计人员具有较强的分析设计能力和相关重构经验。下面以大学学生工作管理程序为例介绍单一职责原则的应用。
【例1】大学学生工作管理程序。
分析:大学学生工作主要包括学生生活辅导和学生学业指导两个方面的工作,其中生活辅导主要包括班委建设、出勤统计、心理辅导、费用催缴、班级管理等工作,学业指导主要包括专业引导、学习辅导、科研指导、学习总结等工作。如果将这些工作交给一位老师负责显然不合理,正确的做 法是生活辅导由辅导员负责,学业指导由学业导师负责,其类图如图 1 所示。
https://blog.csdn.net/weixin_39951988/article/details/86491739
c++中接口可看为抽象类/纯虚函数
尽量将臃肿庞大的接口拆分成更小的和更具体的接口,让接口中只包含客户感兴趣的方法
2002 年罗伯特·C.马丁给“接口隔离原则”的定义是:客户端不应该被迫依赖于它不使用的方法。该原则还有另外一个定义:一个类对另一个类的依赖应该建立在最小的接口上)。
以上两个定义的含义是:要为各个类建立它们需要的专用接口,而不要试图去建立一个很庞大的接口供所有依赖它的类去调用。
接口隔离原则和单一职责都是为了提高类的内聚性、降低它们之间的耦合性,体现了封装的思想,但两者是不同的:
接口隔离原则是为了约束接口、降低类对接口的依赖性,遵循接口隔离原则有以下 5 个优点。
在具体应用接口隔离原则时,应该根据以下几个规则来衡量。
下面以学生成绩管理程序为例介绍接口隔离原则的应用。
【例1】学生成绩管理程序。
分析:学生成绩管理程序一般包含插入成绩、删除成绩、修改成绩、计算总分、计算均分、打印成绩信息、査询成绩信息等功能,如果将这些功能全部放到一个接口中显然不太合理,正确的做法是将它们分别放在输入模块、统计模块和打印模块等 3 个模块中,其类图如图 1 所示
图1 学生成绩管理程序的类图
程序代码如下:
package principle;
public class ISPtest {
public static void main(String[] args) {
InputModule input = StuScoreList.getInputModule();
CountModule count = StuScoreList.getCountModule();
PrintModule print = StuScoreList.getPrintModule();
input.insert();
count.countTotalScore();
print.printStuInfo();
//print.delete();
}
}
//输入模块接口
interface InputModule {
void insert();
void delete();
void modify();
}
//统计模块接口
interface CountModule {
void countTotalScore();
void countAverage();
}
//打印模块接口
interface PrintModule {
void printStuInfo();
void queryStuInfo();
}
//实现类
class StuScoreList implements InputModule, CountModule, PrintModule {
private StuScoreList() {
}
public static InputModule getInputModule() {
return (InputModule) new StuScoreList();
}
public static CountModule getCountModule() {
return (CountModule) new StuScoreList();
}
public static PrintModule getPrintModule() {
return (PrintModule) new StuScoreList();
}
public void insert() {
System.out.println("输入模块的insert()方法被调用!");
}
public void delete() {
System.out.println("输入模块的delete()方法被调用!");
}
public void modify() {
System.out.println("输入模块的modify()方法被调用!");
}
public void countTotalScore() {
System.out.println("统计模块的countTotalScore()方法被调用!");
}
public void countAverage() {
System.out.println("统计模块的countAverage()方法被调用!");
}
public void printStuInfo() {
System.out.println("打印模块的printStuInfo()方法被调用!");
}
public void queryStuInfo() {
System.out.println("打印模块的queryStuInfo()方法被调用!");
}
}
抽象类中的抽象方法必须实现,如接口不隔离,太臃肿,很多接口中方法用不到,也要空实现
例2:
https://blog.csdn.net/yabay2208/article/details/73739514
知道的越少,建立的耦合关系就越弱
迪米特法则(Law of Demeter,LoD)又叫作最少知识原则(Least Knowledge Principle,LKP),产生于 1987 年美国东北大学(Northeastern University)的一个名为迪米特(Demeter)的研究项目,由伊恩·荷兰(Ian Holland)提出,被 UML 创始者之一的布奇(Booch)普及,后来又因为在经典著作《程序员修炼之道》(The Pragmatic Programmer)提及而广为人知。
迪米特法则的定义是:只与你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends and not to strangers)。其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。
迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象、当前对象的方法参数等,这些对象同当前对象存在关联、聚合或组合关系,可以直接访问这些对象的方法。
迪米特法则要求限制软件实体之间通信的宽度和深度,正确使用迪米特法则将有以下两个优点。
降低了类之间的耦合度,提高了模块的相对独立性。
由于亲合度降低,从而提高了类的可复用率和系统的扩展性。
但是,过度使用迪米特法则会使系统产生大量的中介类,从而增加系统的复杂性,使模块之间的通信效率降低。所以,在釆用迪米特法则时需要反复权衡,确保高内聚和低耦合的同时,保证系统的结构清晰。
从迪米特法则的定义和特点可知,它强调以下两点:
所以,在运用迪米特法则时要注意以下 6 点。
【例1】明星与经纪人的关系实例。
分析:明星由于全身心投入艺术,所以许多日常事务由经纪人负责处理,如与粉丝的见面会,与媒体公司的业务洽淡等。这里的经纪人是明星的朋友,而粉丝和媒体公司是陌生人,所以适合使用迪米特法则,其类图如图 1 所示。
图1 明星与经纪人的关系图
程序代码如下:
package principle;
public class LoDtest {
public static void main(String[] args) {
Agent agent = new Agent();
agent.setStar(new Star("林心如"));
agent.setFans(new Fans("粉丝韩丞"));
agent.setCompany(new Company("中国传媒有限公司"));
agent.meeting();
agent.business();
}
}
//经纪人
class Agent {
private Star myStar;
private Fans myFans;
private Company myCompany;
public void setStar(Star myStar) {
this.myStar = myStar;
}
public void setFans(Fans myFans) {
this.myFans = myFans;
}
public void setCompany(Company myCompany) {
this.myCompany = myCompany;
}
public void meeting() {
System.out.println(myFans.getName() + "与明星" + myStar.getName() + "见面了。");
}
public void business() {
System.out.println(myCompany.getName() + "与明星" + myStar.getName() + "洽淡业务。");
}
}
//明星
class Star {
private String name;
Star(String name) {
this.name = name;
}
public String getName() {
return name;
}
}
//粉丝
class Fans {
private String name;
Fans(String name) {
this.name = name;
}
public String getName() {
return name;
}
}
//媒体公司
class Company {
private String name;
Company(String name) {
this.name = name;
}
public String getName() {
return name;
}
}
这个原则首次在Demeter系统中得到正式运用,所以定义为迪米特法则。它讲的是“一个对象应当尽可能少的去了解其他对象”。
优点:消除耦合。
class Abstract Buding
{
public:
virtual void sale() = 0;
virtual string getqulity() = 0;
};
class BuildingA : public AbstractBuding
{
public:
BuildingA() {
mQulity = "高品质";
}
virtual void sale() {
cout << "lou pan A" << mQulity << "is saled" << endl;
}
virtual string getqulity() {
return mQulity;
}
string mQulity;
};
class BuildingB : public AbstractBuding
{
public:
BuildingB() {
mQulity = "低品质";
}
virtual void sale() {
cout << "楼盘 B" << mQulity << "被售卖" << endl;
}
virtual string getqulity() {
return mQulity;
}
string mQulity;
};
// 中介类
class Mediator {
public:
Mediator() {
AbstractBuding* building = new BuildingA;
vBuilding.push_back(building);
building = new BuildingB;
vBuilding.push_back(building);
}
~Mediator() {
for (vector<AbstractBuding*>::iterator it = vBuilding.begin(); it != vBuilding.end(); it++) {
if (*it != NULL) {
delete *it;
}
}
}
AbstractBuding* findMyBuilding(string qulity) {
for (vector<AbstractBuding*>::iterator it = vBuilding.begin(); it != vBuilding.end(); it++) {
if ((*it)->getqulity() == qulity) {
return *it;
}
}
return NULL;
}
vector<AbstractBuding*> vBuilding;
};
//直接和类耦合
void test01() {
BuildingA* aa = new BuildingA;
if (aa->mQulity == "低品质") {
aa->sale();
}
BuildingB* bb = new BuildingB;
if (bb->mQulity == "低品质") {
bb->sale();
}
}
void test02() {
Mediator* mediator = new Mediator;
AbstractBuding* building = mediator->findMyBuilding("低品质"); //遍历容器中所有子类
if (building != NULL)
{
building->sale();
}
else {
cout << "没有符合条件的楼盘"<<endl;
}
}
int main() {
// test01();
test02();
return 0;
}
合成复用原则(Composite Reuse Principle,CRP)又叫组合/聚合复用原则(Composition/Aggregate Reuse Principle,CARP)。它要求在软件复用时,要尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。
如果要使用继承关系,则必须严格遵循里氏替换原则。合成复用原则同里氏替换原则相辅相成的,两者都是开闭原则的具体实现规范。
通常类的复用分为继承复用和合成复用两种,继承复用虽然有简单和易实现的优点,但它也存在以下缺点。
继承复用破坏了类的封装性。因为继承会将父类的实现细节暴露给子类,父类对子类是透明的,所以这种复用又称为==“白箱”==复用。
子类与父类的耦合度高。父类的实现的任何改变都会导致子类的实现发生变化,这不利于类的扩展与维护。
它限制了复用的灵活性。从父类继承而来的实现是静态的,在编译时已经定义,所以在运行时不可能发生变化。
采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点。
它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为==“黑箱”==复用。
新旧类之间的耦合度低。这种复用所需的依赖较少,新对象存取成分对象的唯一方法是通过成分对象的接口。
复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。
合成复用原则是通过将已有的对象纳入新对象中,作为新对象的成员对象来实现的,新对象可以调用已有对象的功能,从而达到复用。
【例1】汽车分类管理程序。
分析:汽车按“动力源”划分可分为汽油汽车、电动汽车等;按“颜色”划分可分为白色汽车、黑色汽车和红色汽车等。如果同时考虑这两种分类,其组合就很多。图 1 所示是用继承关系实现的汽车分类的类图。
从图 1 可以看出用继承关系实现会产生很多子类,而且增加新的“动力源”或者增加新的“颜色”都要修改源代码,这违背了开闭原则,显然不可取。但如果改用组合关系实现就能很好地解决以上问题,其类图如图 2 所示。
图2 用组合关系实现的汽车分类的类图
class AbstractCar
{
public:
virtual void run() = 0;
};
class DaZhong :public AbstractCar {
public:
virtual void run() {
cout << "大众车启动" << endl;
}
};
class Tuolaji :public AbstractCar {
public:
virtual void run() {
cout << "拖拉机启动" << endl;
}
};
# if 0
//针对具体类,每一个都要继承
class Persion :public DaZhong {
void Doufeng() {
run();
}
};
class Persion :public Tuolaji {
void Doufeng() {
run();
}
};
#endif
//可以使用组合
class Person {
public:
void setCar(AbstractCar* car) {
this->car = car;
}
void Doufeng() {
this->car->run();
}
~Person() {
if (this->car != NULL) {
delete this->car;
}
}
AbstractCar* car;
};
void test() {
Person p;
p.setCar(new DaZhong);
p.Doufeng();
p.setCar(new Tuolaji);
p.Doufeng();
}
// 继承和组合优先使组合
int main() {
test();
return 0;
}
这 7 种设计原则是软件设计模式必须尽量遵循的原则,是设计模式的基础。在实际开发过程中,并不是一定要求所有代码都遵循设计原则,而是要综合考虑人力、时间、成本、质量,不刻意追求完美,要在适当的场景遵循设计原则。这体现的是一种平衡取舍,可以帮助我们设计出更加优雅的代码结构。
各种原则要求的侧重点不同,下面我们分别用一句话归纳总结软件设计模式的七大原则,如下表所示。
序号 | 设计原则 | 一句话归纳 | 目的 |
---|---|---|---|
1 | 开闭原则 | 对扩展开放,对修改关闭 | 降低维护带来的新风险 |
2 | 依赖倒置原则 | 高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象 | 更利于代码结构的升级扩展 |
3 | 单一职责原则 | 约束类,一个类应该有且仅有一个引起它变化的原因,同样适用于方法 一个类只干一件事,实现类要单一 |
便于理解,提高代码的可读性 |
4 | 接口隔离原则 | 约束接口,客户端不应该被迫依赖于它不使用的方法 一个接口只干一件事,接口要精简单一 |
功能解耦,高聚合、低耦合 |
5 | 迪米特法则 | 如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用 不该知道的不要知道,一个类应该保持对其它对象最少的了解, |
只和朋友交流,不和陌生人说话,减少 |
6 | 里氏替换原则 | 不要破坏继承体系,子类重写方法功能发生改变,不应该影响父类方法的含义 子类可以实现父类的抽象方法,但不能覆盖父类的非抽象方法 |
防止继承泛滥 |
7 | 合成复用原则 | 尽量使用组合或者聚合关系实现代码复用,少使用继承 | 降低代码耦合 |
实际上,这些原则的目的只有一个:降低对象之间的耦合,增加程序的可复用性、可扩展性和可维护性。
记忆口诀:访问加限制,函数要节俭,依赖不允许,动态加接口,父类要抽象,扩展不更改。
在程序设计时,我们应该将程序功能最小化,每个类只干一件事。若有类似功能基础之上添加新功能,则要合理使用继承。对于多方法的调用,要会运用接口,同时合理设置接口功能与数量。最后类与类之间做到低耦合高内聚。
http://c.biancheng.net/view/1333.html
https://blog.csdn.net/qq_36986067/article/details/89165537